
Lingvo: a Modular and Scalable Framework
for Sequence-to-Sequence Modeling

https://github.com/tensorflow/lingvo

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen,
Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao,
Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu,
Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey,
Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang,
Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob,

Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean,
Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu,

Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry,
Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez,

Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang,
Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu,
Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen,

Kazuki Irie, George Foster, John Richardson, Klaus Macherey,
Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar,

Kanishka Rao, David Rybach, Matthew Murray,
Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani,
Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee,

Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang,
Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey,
Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour,

William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl,
and Pat Rondon

February 2019

†Special thanks to Alexander Grushetsky and Adam Sadovsky for the initial design of the
Params class.

ar
X

iv
:1

90
2.

08
29

5v
1

 [
cs

.L
G

]
 2

1
Fe

b
20

19

https://github.com/tensorflow/lingvo

Abstract

Lingvo is a Tensorflow framework offering a complete solution for collaborative
deep learning research, with a particular focus towards sequence-to-sequence
models. Lingvo models are composed of modular building blocks that are flexible
and easily extensible, and experiment configurations are centralized and highly
customizable. Distributed training and quantized inference are supported directly
within the framework, and it contains existing implementations of a large number
of utilities, helper functions, and the newest research ideas. Lingvo has been used
in collaboration by dozens of researchers in more than 20 papers over the last
two years. This document outlines the underlying design of Lingvo and serves
as an introduction to the various pieces of the framework, while also offering
examples of advanced features that showcase the capabilities of the framework.

Contents
1 Introduction 2

2 Design 2
2.1 Motivation . 2
2.2 Components . 4

3 Implementation 5
3.1 Params . 5
3.2 Layers . 5
3.3 Variable Management . 6
3.4 Input Processing . 6
3.5 Model Registration . 7
3.6 Overriding Params from the Command Line 7
3.7 Assertions . 7
3.8 Code Layout . 8

4 Life of a Training Run 9

5 Advanced Usage 10
5.1 Distributed Training . 10

5.1.1 Common Runners . 10
5.1.2 Asynchronous Training 11
5.1.3 Synchronous Training . 11

5.2 Multi-task Models . 11
5.3 Inference and Quantization . 11

1

1 Introduction
This paper presents the open-source Lingvo framework developed by Google
for sequence modeling with deep neural networks. To date, this framework has
produced a number of state-of-the-art results in machine translation [2, 21, 23],
speech recognition [3, 4, 5, 10, 11, 12, 13, 14, 16, 15, 20, 22], speech synthesis [6,
8, 19], and speech translation [7, 9]. It is currently being used by dozens of
researchers in their day-to-day work.

We begin by motivating the design of the framework in Section 2, including
the development environment it was built for as well as its guiding principles.
That is followed by an exposition of its core components and the role possessed
by each of them.

Then, in Section 3, we take a deeper dive into how fundamental concepts
are implemented and what that means for users of the framework. This covers
topics such as how trainable variables are managed and how hyperparameters
are configured, as well as the basic APIs involved in composing layers into a
model. While there will be some code snippets, those seeking complete examples
with code should refer to the codelab [1].

Section 4 provides a consolidated walk-through of the flow of logic during a
training run. It outlines the pieces involved from how the model is constructed
to how its parameters are updated.

Finally, advanced usage such as distributed training, multi-task models, and
inference are described in Section 5.

2 Design

2.1 Motivation
In research, it is critical to be able to quickly prototype and iterate on new ideas.
But, when working in a collaborative environment, it is also critical to be able
to easily reuse code and document past experiments.

Lingvo evolved out of the need to support a large group of applied researchers
working on speech and natural language problems in a single shared codebase.

It follows these guiding principles:

• Individual pieces should be small and modular, implement the same con-
sistent interface, and be easily extensible;

• Experiments should be shared, comparable, reproducible, understandable,
and correct;

• Performance should efficiently scale to production-scale datasets and dis-
tributed training over hundreds of accelerators;

• Code should be shared as much as possible when transitioning from research
to production.

2

Modular building blocks. Lingvo is designed for collaboration, focusing
on code with a consistent interface and style that is easy to read and understand,
and a flexible modular layering system that promotes code reuse. The same
building blocks, such as LSTM or attention layers, can be used as-is across
different models with assurance of good quality and performance. Because the
blocks are general, an algorithmic improvement in one task (such as the use
of multi-head attention in Machine Translation) can be immediately applied
to another task (e.g. Speech Recognition). With many people using the same
codebase, this makes it extremely easy to employ ideas others are trying in your
own models. This also makes it simple to adapt existing models to new datasets.

The building blocks are each individual classes, making it straightforward to
extend and override their implementation. Layers are composed in a hierarchical
manner, separating low-level implementation details from high-level control flow.

Shared, comparable, reproducible, understandable, and correct ex-
periments. A big problem in research is the difficulty in reproducing and
comparing results, even between people working in the same team. To better
document experiments and allow the same experiment to be re-run in the future,
Lingvo adopts a system where all the hyperparameters of a model are configured
in their own dedicated sub-directory separate from the model logic and are meant
to be committed to a shared version control system. As the models are built
from the same common layers, this allows our models to be compared with each
other without worrying about effects from minute differences in implementation.

All models follow the same overall structure from input processing to loss
computation, and all the layers have the same interface. In addition, all the
hyperparameters are explicitly declared and their values are logged at runtime.
Finally, there are copious amounts of assertions about tensor values and shapes
as well as documentation and unit tests. This makes it very easy to read and
understand new models when familiar with the framework, and to debug and
ensure that the models are correct.

Performance. Lingvo is used to train on production-scale datasets. As a
matter of necessity, its implementation has been optimized, from input processing
to the individual layers. Support for synchronous and asynchronous distributed
training is provided.

Deployment-readiness. Ideally, there should be little porting from research
to product deployment. In Lingvo, inference-specific graphs are built from the
same shared code used for training, and individual classes can be overwritten
with device-specific implementations while the high level model architecture
remains the same. In addition, quantization support is built directly into the
framework.

However, these benefits come at the cost of more discipline and boilerplate,
a common trade-off between scalability and fast prototyping.

3

2.2 Components
The following are the core components of the Lingvo framework.

Models: A Model is an abstract collection of one or more Tasks. For single-
task models the Model is just a transparent wrapper around the Task and the
two can be considered the same. For multi-task models, the Model controls how
variables are shared between Tasks and how Tasks are sampled for training.

Tasks: A Task is a specification of a complete optimization problem, such
as image classification or speech recognition. It contains an input generator,
Layers representing a neural network, a loss value, and an optimizer, and is in
charge of updating the model parameters on each training step.

Layers: A Layer represents an arbitrary function possibly with trainable
parameters. A Layer can contain other Layers as children. SoftMax, LSTM,
Attention, and even a Task are all examples of Layers.

Input Generators: Lingvo input generators are specialized for sequences,
allowing batching input of different lengths in multiple buckets and automatically
padding them to the same length. Large datasets that span multiple input files
are also supported. The flexibility of the generic_input function enables simple
and efficient implementations of custom input processors.

Params: The Params object contains hyperparameters for the model. They
can be viewed as local versions of tf.flags. Layers, Tasks, and Models are all
constructed in accordance to the specifications in their Params.

Params are hierarchical, meaning that the Params for an object can contain
Params configuring child objects.

Experiment Configurations: Each experiment is defined in its own class
and fully defines all aspects of the experiment from hyperparameters like learning
rate and optimizer parameters to options that affect the model graph structure
to input datasets and other miscellaneous options.

These standalone configuration classes make it easy to keep track of the
params used for each experiment and to reproduce past experiments. It also
allows configurations to inherit from other configurations.

All experiment params are registered in a central registry, and can be refer-
enced by its name, e.g. image.mnist.LeNet5.

Job Runners: Lingvo’s training setup is broken into separate jobs. For
example, the Controller job is in charge of writing checkpoints while the
Evaler job evaluates the model on the latest checkpoint. For a full description
of the different job runners see Section 5.1.

4

NestedMap: A NestedMap is a generic dictionary structure for arbitrary
structured data similar to tf.contrib.framework.nest. It is used throughout
Lingvo to pass data around. Most python objects in the code are instances of
either Tensor, a subclass of BaseLayer, or NestedMap.

Custom Ops: Lingvo supports custom op kernels written in C++ for high-
performance code. For example, custom ops are used for the input pipeline,
beam search, and tokenization.

3 Implementation
This section provides a more detailed look into the core Lingvo APIs. Section 3.1
introduces the Params class which is used to configure everything. Section 3.2
covers how Layers are constructed, how they work, and how they can be
composed. Section 3.3 describes how variables are created and managed by each
Layer. Section 3.4 goes over input reading and processing, and Sections 3.5,
3.6, and 3.7 briefly go over model registration, overriding params, and runtime
assertions. Finally, Section 3.8 gives a simple overview of the layout of the source
code.

3.1 Params
The Params class is a dictionary with explicitly defined keys used for configura-
tion. Keys should be defined when the object is created, and trying to access
or modify a nonexistent key will raise an exception. In practice, every Layer
has a Params classmethod, which creates a new params object and defines the
keys used to configure the layer with a reasonable default value. Then, in a
separate experiment configuration class, these default values are overridden with
experiment-specific values.

3.2 Layers
In order to construct a Layer, an instance of these layer’s Params is required.
The params includes details such as:

• cls: the layer’s class,

• name: the layer’s name, and

• params_init: how the variables created by this layer should be initialized.

Because the class is contained in the params, the following ways of constructing
the layer are equivalent:

p = SomeLayerClass.Params ()
layer = SomeLayerClass(p) # Call the constructor.
layer = p.cls(p) # Same , but call through the params.

5

All layers have a FProp () function, which is called during the forward
step of a computation. Child layers can be created in the constructor using
self.CreateChild('child_name ', child_params), and they can be referenced
by self.child_name.

3.3 Variable Management
Each Layer creates and manages its own variables.

Variables are created in the layer’s __init__ () method through a call to
self.CreateVariable (), which registers the variable in self.vars and the value
of the variable (potentially after a transform like adding variational noise) in
self.theta. In FProp (), because it may be executed on different devices in
distributed training, for performance reasons it is best to access the variables
through the theta parameter passed in to the function rather than self.vars
or self.theta.

Variable placement is determined by the cluster.GetPlacer () function.
The default policy is to place each variable on the parameter server that has
the least bytes allocated. For model parallelism, an explicit policy based on e.g.
variable scope can be adopted.

There are many benefits to explicitly managing variables instead of using
tf.get_variable:

• It supports research ideas such as weight noise.

• The variable_scope construct can be error prone and less readable, for
example accidental reuse of a variable.

• For sync replica training, sharing the weights between multiple workers on
the same machine is otherwise awkward.

3.4 Input Processing
Lingvo supports inputs in either plain text or TFRecord format. Sequence
inputs can be bucketed by length through the bucket_upper_bound and
bucket_batch_limit params.

A tokenizer can be specified for text inputs. Available tokenizers include
VocabFileTokenizer which uses a look-up table provided as a file, BpeTokenizer
for byte pair encoding [18], and WpmTokenizer for word-piece models [17].

The input file pattern should be specified as “ type:glob_pattern” through
the file_pattern param. The input processor should implement the
_DataSourceFromFilePattern () method, which returns an op that when exe-
cuted reads from the file and returns some tensors. Often this op is implemented
as a custom C++ op using the RecordProcessor interface. The tensors returned by
this op can be retrieved by calling _BuildDataSource (), and can be used to fill in
an input batch NestedMap to be returned by the InputBatch () method. Finally,
batch-level preprocessing can also be implemented in PreprocessInputBatch ().

In addition to using a custom RecordProcessor op, an input processor can
also be defined directly in Python through the generic_input op.

6

3.5 Model Registration
Configuration classes lie inside lingvo/tasks/<task>/params/<param>.py and
are annotated with @model_registry.RegisterSingleTaskModel for the typical
case of a single-task model. This annotation adds the class to the model registry
with a key of <task >.<param >.<classname > (e.g. image.mnist.LeNet5).

The class should be a subclass of SingleTaskModelParams and implement
the Task() method, which returns a Params instance configuring a Task. The
registration code will automatically wrap the Task into a SingleTaskModel.

The class should also implement the Train(), Test(), and maybe Dev()
methods. These methods return a Params instance configuring an input genera-
tor, and represent different datasets.

An example is shown in Figure 1.

@model_registry.RegisterSingleTaskModel
class MyTaskParams(base_model_params.SingleTaskModelParams):

@classmethod
def Train(cls):

... # Input params.

@classmethod
def Task(cls):

p = my_model.MyNetwork.Params ()
p.name = 'my_task '
...
return p

Figure 1: Registering a single-task model.

3.6 Overriding Params from the Command Line
It is possible to override the values of any hyperparameter for a specific run
using the --model_params_override or --model_params_file_override flags.
This makes it simple to start similar jobs for hyperparameter tuning.

3.7 Assertions
py_utils.py contains functions for run-time assertions about values and shapes
as well as CheckNumerics () for detecting NaNs. Assertions can be disabled with
the command-line --enable_asserts=false. Similarly, CheckNumerics can be
disabled with --enable_check_numerics=false.

7

3.8 Code Layout

lingvo

trainer.py
Entry point.

model_imports.py
Imports and registers all model params in the global registry.

core

base_input_generator.py
base_layer.py
base_model.py
cluster.py
Contains the policy for op placement.

hyperparams.py
attention.py, layers.py, rnn_cell.py, rnn_layers.py
Contains implementations for many common layers.

optimizer.py
py_utils.py
Most utility functions are here.

recurrent.py
The functional RNN.

summary_utils.py
Contains utilities for dealing with summaries.

ops
Folder for custom C++ ops.

record_*.*
The input processing pipeline.

py_x_ops.py
Python bindings for the C++ ops.

x_ops.cc
C++ op definitions.

tasks

<task>
Folder for an individual task/domain/project.

params
Folder for model params.

tools

8

4 Life of a Training Run

Figure 2: An overview of the Lingvo framework, outlining how models are
instantiated, trained, and exported for evaluation and serving.

This section gives an overview of what happens behind the scenes from the
start of a training run to the end of the first step for a single-task model.

Training is started by launching the trainer with the name of a model and
the path to a log directory. The model name is resolved using the model registry
to obtain the Params for the model, and the various job runners for training are
created.

The Params at this point is just the params for the top level Model with
the overrides in the experiment configuration corresponding to the model name
specified. No Layers have been instantiated yet.

Each runner then independently instantiates the model and builds the tensor-
flow graphs and ops that they will execute based on their job. For example, the
Trainer will build a train_op spanning both the FProp () and BProp () graphs
and involves updating model parameters, while the Evaler and Decoder will
build a eval_metrics op involving only the FProp () graph with p.is_eval set.
There can be multiple Evalers and Decoders, one for each evaluation dataset.

Instantiating the model calls its __init__ () method, which constructs the
Params for child layers and instantiates them recursively through calls to
self.CreateChild (). These child layer params could be exposed as part of
the top level model params, perhaps as a “params template”, allowing them
to be configured in the params files, or they could be constructed completely
from scratch in the __init__ () method based on the information available at
that time. The __init__ () method is also in charge of creating the variables
managed by the Layer through self.CreateVariable ().

Once the graphs are built, the Trainer runner will wait for the Controller
runner to initialize the variables or restore them from a checkpoint, while the
evaluation runners will wait for a new checkpoint to be written to the log
directory.

9

After the variables are initialized, the Trainer will run training, i.e. calling
session.run with the model’s train_op, in a loop, and the Controller will
produce training summaries for each step. When enough steps have passed,
the Controller writes a new checkpoint to the log directory. The Evaler and
Decoder detect this new checkpoint and evaluates the model at that checkpoint
to generate summaries. This process then continues until the user terminates all
jobs or p.train.max_steps is reached.

For more details about the various runners such as the difference between
Evalers and Decoders, as well as information about which devices individual ops
in the graph will be placed on during distributed training, see Section 5.1.

5 Advanced Usage
This section provides some examples of advanced features. This is by no means an
exhaustive list of all the existing features, and many new features are continually
being added.

Section 5.1 describes the distributed training setup. Section 5.2 details how
multi-task models are configured and registered, and Section 5.3 gives a brief
look into inference and productionization support.

5.1 Distributed Training
Both synchronous as well as asynchronous distributed training are supported.
In asynchronous mode, each individual worker job executes its own training loop
and is completely independent from the other workers. In synchronous mode,
there is a single training loop driven by a trainer client that distributes work
onto the various worker jobs.

Here we summarize the different types of job runners under each configuration.
A shared directory on a distributed file system where checkpoints can be

written and loaded is assumed to exist.

5.1.1 Common Runners

Controller: This job handles initializing variables and saving/loading check-
points as well as writing training summaries.

Evaler: This job loads the latest checkpoint and runs and exports evaluation
summaries. Multiple evalers can be started for different datasets.

Decoder: This job loads the latest checkpoint and runs and exports decoding
summaries. Multiple decoders can be started for different datasets. Decoders
are different from evalers in that the ground-truth is used during evaluation but
not during decoding. A concrete example is that Evalers can use teacher-forcing
while Decoders may need to rely on beam search.

10

5.1.2 Asynchronous Training

Trainer: This is the worker job which runs the training op and sends variable
updates.

Parameter Server: Variable values are stored here. Trainer jobs send updates
and receive global values periodically.

Data Processor: This is an optional job for loading data before dispatching
them to trainers, to offload the cost associated with loading and preprocessing
data from the trainer to a separate machine.

5.1.3 Synchronous Training

Worker: The worker job in sync training runs the training op like the trainer
job in async training but they do not perform variable updates.

Trainer client: The trainer client drives the training loop and aggregates
their results before updating the variables. There are no parameter servers in
sync training. Instead, the worker jobs act as parameter servers, and the trainer
client sends the relevant variable updates to each worker.

5.2 Multi-task Models
A multi-task model is composed of individual Tasks sharing variables. Existing
options for variable sharing range from sharing just the encoder
(multitask_model.SharedEncoderModel) to fine-grained control with
multitask_model.RegExSharedVariableModel.

Multi-task model params should be a subclass of MultiTaskModelParams
and implement the Model () method, which returns a Params instance config-
uring a MultiTaskModel. The task_params and task_probs attributes define
respectively the params and relative weight of each Task.

An example of registering a multi-task model is shown in Figure 3.
Knowledge distillation is also supported via base_model.DistillationTask.

For knowledge distillation, the teacher parameters must be loaded from a
checkpoint file by specifying params.train.init_from_checkpoint_rules in
the Task() definition.

5.3 Inference and Quantization
Once models have been trained, they must be deployed on a server or on an
embedded device. Typically, during inference, models will be executed on a
device with fixed-point arithmetic. To achieve the best quality, the dynamic
range must be kept in check during training. We offer quantized layers that
wrap the training and inference computation functions for convenience.

11

@model_registry.RegisterMultiTaskModel
class MyMultiTaskParams(base_model_params.MultiTaskModelParams):

@classmethod
def Train(cls):

p = super(MyMultiTaskParams , cls).Train ()
task1_input_params = ...
p.Define('task1 ', task1_input_params , '')
Or, refer to existing single task model params.
p.Define('task2 ', MyTaskParams.Train(), '')
return p

@classmethod
def Model(cls):

p1 = my_model.MyNetwork.Params ()
p1.name = 'task1 '
...
Or, refer to existing single task model.
p2 = MyTaskParams.Task()
p2.name = 'task2 '

p = base_model.MultiTaskModel.Params ()
p.name = 'my_multitask_model '
p.task_params = hyperparams.Params ()
p.task_params.Define('task1 ', p1, '')
p.task_params.Define('task2 ', p2, '')
p.task_probs = hyperparams.Params ()
p.task_probs.Define('task1 ', 0.5, '')
p.task_probs.Define('task2 ', 0.5, '')
return p

Figure 3: Registering a multi-task model.

Inference has different computational characteristics than training. For
latency reasons, the batch size is smaller, sometimes even equal to just 1. For
sequence models, often a beam search is performed. It may even be preferable to
drive inference one timestep at a time. Several constraints dominate the choice
of how to run the computation: 1) available operations, 2) desired latency, 3)
parallelizability, and 4) memory and power consumption. To enable the greatest
amount of flexibility given these constraints, we leave it to the designer of the
model to express inference in the optimal way by explicitly exporting inference
graphs rather than leaving it to a graph converter. A basic inference graph can
be written in a few lines of code, reusing the same functions used for building
the training graph, while for more complicated inference graphs it is possible to
even completely swap out the implementation of a low level layer.

12

References
[1] Introduction to Lingvo. https://colab.research.google.com/github/

tensorflow/lingvo/blob/master/codelabs/introduction.ipynb.

[2] M. X. Chen, O. Firat, A.Bapna, M. Johnson, W. Macherey, G. Fosterand L.
Jones, M. Schuster, N. Shazeer, N. Parmar, A. Vaswani, J. Uszkoreit,
L. Kaiser, Z. Chen, Y. Wu, and M. Hughes. The Best of Both Worlds:
Combining Recent Advances in Neural Machine Translation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics,
pages 76–86. Association for Computational Linguistics, 2018.

[3] C. C. Chiu and C. Raffel. Monotonic Chunkwise Attention. Proc. Interna-
tional Conference on Learning Representations (ICLR), 2018.

[4] C. C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly, B. Li, J. Chorowski,
and M. Bacchiani. State-of-the-art Speech Recognition With Sequence-
to-Sequence Models. Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2018.

[5] C. C. Chiu, A. Tripathi, K. Chou, C. Co, N. Jaitly, D. Jaunzeikare, A. Kan-
nan, P. Nguyen, H. Sak, A. Sankar, J. Tansuwan, N. Wan, Y. Wu, and
X. Zhang. Speech recognition for medical conversations. Proc. Interspeech,
2018.

[6] W. N. Hsu, Y. Zhang, R. J. Weiss, H. Zen, Y. Wu, Y. Wang, Y. Cao, Y. Jia,
Z. Chen, J. Shen, et al. Hierarchical generative modeling for controllable
speech synthesis. arXiv preprint arXiv:1810.07217, 2018.

[7] Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, and Zhifeng
Chen. Sequence-to-sequence models can directly translate foreign speech.
Proc. Interspeech, pages 2625–2629, 08 2017.

[8] Y. Jia, Y. Zhang, R. J. Weiss, Q. Wang, J. Shen, F. Ren, Z. Chen, P. Nguyen,
R. Pang, I. Lopez-Moreno, and Y. Wu. Transfer Learning from Speaker
Verification to Multispeaker Text-To-Speech Synthesis. Advances in Neural
Information Processing Systems, 2018.

[9] Ye Jia, Melvin Johnson, Wolfgang Macherey, Ron J Weiss, Yuan Cao, Chung-
Cheng Chiu, Naveen Ari, Stella Laurenzo, and Yonghui Wu. Leveraging
weakly supervised data to improve end-to-end speech-to-text translation.
arXiv preprint arXiv:1811.02050, 2018.

[10] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and R. Prabhavalkar.
An analysis of incorporating an external language model into a sequence-
to-sequence model. In Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2018.

13

https://colab.research.google.com/github/tensorflow/lingvo/blob/master/codelabs/introduction.ipynb
https://colab.research.google.com/github/tensorflow/lingvo/blob/master/codelabs/introduction.ipynb

[11] D. Lawson, C. C. Chiu, G. Tucker, C. Raffel, K. Swersky, and N. Jaitly.
Learning hard alignments with variational inference. Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP),
2018.

[12] B. Li, T. N. Sainath, K. Sim, M. Bacchiani, E. Weinstein, P. Nguyen,
Z. Chen, Y. Wu, and K. Rao. Multi-Dialect Speech Recognition With a
Single Sequence-to-Sequence Model. Proc. IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), 2018.

[13] R. Pang, T. N. Sainath, R. Prabhavalkar, S. Gupta, Y. Wu, S. Zhang, and
C. C. Chiu. Compression of End-to-End Models. In Proc. Interspeech, 2018.

[14] R. Prabhavalkar, T. N. Sainath, Y. Wu, P. Nguyen, Z. Chen, C. C. Chiu,
and A. Kannan. Minimum Word Error Rate Training for Attention-based
Sequence-to-sequence Models. In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2018.

[15] T. N. Sainath, C. C. Chiu, R. Prabhavalkar, A. Kannan, Y. Wu, P. Nguyen,
and Z. Chen Z. Improving the Performance of Online Neural Transducer
Models. Proc. Interspeech, 2018.

[16] T. N. Sainath, P. Prabhavalkar, S. Kumar, S. Lee, A. Kannan, D. Rybach,
V. Schogol, P. Nguyen, B. Li, Y. Wu, Z. Chen, and C. C. Chiu. No Need for
a Lexicon? Evaluating the Value of the Pronunciation Lexica in End-to-End
Models. Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2018.

[17] M. Schuster and K. Nakajima. Japanese and Korean Voice Search. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on, pages 5149–5152. IEEE, 2012.

[18] R. Sennrich, B. Haddow, and A. Birch. Neural Machine Translation of Rare
Words with Subword Units, 2015.

[19] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. J. Skerry-Ryan, R. A. Saurous, Y. Agiomyrgiannakis,
and Y. Wu. Natural TTS Synthesis By Conditioning WaveNet on Mel
Spectrogram Predictions. Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2018.

[20] S. Toshniwal, T. N. Sainath, R. J. Weiss, B. Li, P. Moreno, E. Weinstein,
and K. Rao. End-to-End Multilingual Speech Recognition using Encoder-
Decoder Models. Proc. IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2018.

[21] R. J. Weiss, J. Chorowski J, N. Jaitly, Y. Wu, and Z. Chen. Sequence-to-
Sequence Models Can Directly Translate Foreign Speech. Proc. Interspeech,
2017.

14

[22] I. Williams, A. Kannan, P. Aleksic, D. Rybach, and T. N. Sainath TN.
Contextual Speech Recognition in End-to-End Neural Network Systems
using Beam Search. Proc. Interspeech, 2018.

[23] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson,
X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s Neural Ma-
chine Translation system: Bridging the gap between human and machine
translation. arXiv preprint, 1609.08144, 2016.

15

	1 Introduction
	2 Design
	2.1 Motivation
	2.2 Components

	3 Implementation
	3.1 Params
	3.2 Layers
	3.3 Variable Management
	3.4 Input Processing
	3.5 Model Registration
	3.6 Overriding Params from the Command Line
	3.7 Assertions
	3.8 Code Layout

	4 Life of a Training Run
	5 Advanced Usage
	5.1 Distributed Training
	5.1.1 Common Runners
	5.1.2 Asynchronous Training
	5.1.3 Synchronous Training

	5.2 Multi-task Models
	5.3 Inference and Quantization

