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ABSTRACT

In this paper, we explore various frame rate reduction schemes
on the two-pass cascaded encoder model to improve its ef-
ficiency without scarifying the transcription quality. We
conduct extensive studies on frame rate reduction strategies,
left and right context window length, trade-offs in quality,
latency, computation and power consumption, and perfor-
mance in short- and long-form datasets. With the proposed
schemes, we can lower the 2nd pass frame rate to 120 ms,
half of the 1st pass’s. This achieves 20% RTF reduction /
13% power saving / 19% lower final latency, without impact
on the word-error-rate nor partial results’ latency. If allowing
partial latency increase, we can further reduce the frame rate
to 180 ms or even 240 ms from the 1st pass, and obtain 45%
RTF / 35% power savings, with a similar or even better (on
the short-form testset) recognition accuracy.

Index Terms— On-device ASR, cascaded streaming
model, frame rate reduction

1. INTRODUCTION
End-to-end (E2E) automatic speech recognition (ASR) has
become popular in recent years [1, 2, 3]. There are many ad-
vantages of an E2E system. First, it does not require human
annotations for the speech-text alignments, and instead learns
a direct map from the speech signal to the output tokens [4].
This benefit enables the model to use word-piece [5] or other
large vocabularies rather than phonemes or graphemes, and
further improves the model capacity. More importantly, it of-
ten outperforms conventional systems, e.g. [6], in transcrip-
tion quality [7, 8]. Additionally, it can run at a lower frame
rate [9], which saves both training and inference costs. Mean-
while, without separate acoustic (AM), pronunciation (PM)
and language models (LM), E2E systems are often more com-
pact and could have smaller model sizes [10]. Interested read-
ers can refer to these recent survey papers, [1, 11], for techni-
cal details of E2E ASR models.

Among all the benefits above, the inference efficiency
and the small model size make the E2E model very suitable
for on-device deployment. On-device ASR applications often
require streaming recognition (i.e. allow the speech signal
to be processed as it is being spoken). There are a number
of challenges involved in on-device streaming ASR: 1) Due

to the streaming nature, the model is typically causal, or has
little right-context. Therefore, its recognition quality is of-
ten worse than full-context systems. 2) The on-device setting
strictly limits the model size (typically at a maximum of a few
hundreds megabytes) and the power consumption, such that
heavy computational operations must be avoided as much
as possible. To address these challenges, new paradigms
and methods have been proposed. For example, two-pass
architecture [12] brings right-context to the 2nd pass, which
leads to better quality, but keeps the 1st pass causal only
such that the streaming latency is not affected. To reduce the
model size and satisfy on-device memory and storage require-
ments, quantization and sparsity training [10] are adopted. To
achieve power savings, demanding model components are
replaced by light-weight modules, e.g. in [13]. Lowering the
frame rate [9] or skipping unnecessary frames [14], can be
even more effective, as it saves the model’s computation as a
whole, rather than targeting a specific sub-module. Conven-
tional hybrid systems often run at 10 ms frame length, while
recent E2E streaming systems can achieve up to 80 ms frame
length [15] without observing significant quality loss.

In this paper, we push the frame length to 240 ms. To
the best of our knowledge, this is the first attempt to run on-
device cascaded streaming ASR model on such a low rate.
Our contributions are: 1. We can achieve 120 ms frame length
without transcription quality loss or latency increase. 2. If
allowing a slightly higher partial latency, 180 ms / 240 ms
frame length can be used without / with < 10% quality re-
gression on long-form testsets, respectively. The system can
save 35% power consumption. 3. When reducing frame rate,
we propose to also reduce left / right-context frame number
to maintain a similar context window duration. This is shown
to boost WERs, reduce latency and save computation at the
same time. 4. A comprehensive study on different reduction
settings is conducted to evaluate quality, power and latency
trade-offs. 5. We add an analysis on Voice Activity Detector
(VAD) based multi-segment recognition.

2. RELATED WORK
There has been tremendous efforts to build on-device stream-
ing ASR systems in the past decade [16, 17, 7, 18, 10]. It is
highly desired for low-cost, real-time, privacy and reliability
purposes. In [17], the authors list several key techniques to
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improve streaming ASR performance, including large batch-
sizes, using word-piece targets, using shallow-fusion [19]
for context biasing, parameter quantization, etc. To improve
model robustness, [7] proposes to increase training data di-
versity. To reduce latency, [20] describes a technique called
FastEmit to encourage the model emitting earlier than later.
Two-pass model paradigm is proposed in [12], which applies
future context in the 2nd pass, to bridge the performance gap
between streaming and full-context ASR models. A number
of works, e.g. in [18, 10], are continuously pushing the limit
of this paradigm, by constructing more effective encoders and
decoders, for the two passes.

Conformer [21] is one of the state-of-the-art architectures
designed for speech tasks. It augments the standard Trans-
former architecture with convolutional layers, such that local
dependencies are better captured. Conformer is supported in
popular open-source ASR toolkits such as ESPNet [22] and
next-gen Kaldi [23]. To achieve E2E ASR training without
frame-level annotations, CTC [24] and RNN-T [4] models
are widely used, where the latter generally outperforms the
former regarding transcription quality. Both models maxi-
mize an aggregated probability of the target label sequences
given the input speech frames, but RNN-T explicitly models
the conditional dependence on previous labels. In [13], the
conventional LSTM prediction network in RNN-T decoder,
is replaced with a simple embedding layer, such that a huge
speedup is gained without quality degradation. LAS [25] is
another popular model for E2E training, but it often requires
full context thus not suitable for streaming ASR.

Frame rate reduction gains popularity as ASR model
capacity dramatically increases, such that a lower resolution
emphasizing on meaningful acoustic units could help recog-
nition quality. The authors in [26] argue that we can reduce
frame rate to a level of duration of a phoneme, or a word-
piece token. An early attempt [9] reduces frame rate to 40
ms length, on the CTC models. A recent work in [15], tests
40 and 80 ms frame length combined with different left and
right-context lengths. To achieve reduction, different sub-
sampling techniques are proposed in the past a few years.
[26] proposes to use convolutional layers for sub-sampling.
In [17], the authors propose a time-reduction layer that con-
catenate consecutive frames, which is shown to have no word-
error-rate (WER) loss, up to 60 ms output frame length, on the
RNN-T model. Funnel-attention is introduced in [27], as an
alternative sub-sampling technique to preserve as much infor-
mation as possible. The key idea is to exploit the query-key-
value scheme inside an attention layer. Let the query have a
stride k; each query is still attending to all the keys, but the
output will be the same length as the queries, which is down-
sampled by a factor of k. Unlike a uniform sub-sampling
that simply discards unused frames, the Funnel-attention can
aggregate information from the unused frames through the
attention mechanism. Compared to other pooling methods,
the Funnel-attention extracts more information from unused

frames than a simple average or max operation. Its perfor-
mance gain is demonstrated in [27] for NLP tasks and in [10]
for ASR tasks.

3. THE MODEL

In Figure 1, we present the diagram of the cascaded stream-
ing ASR model. It is a two-pass architecture. The inputs are
log-Mel-spectrogram features, with a frame length of ` mil-
liseconds. The 1st encoder is causal only. It consumes a stack
of k1 consecutive input frames each time, and outputs one en-
coded feature vector. Therefore the 1st encoder’s output has
an equivalent output frame length `1 = k1`. The encoded
feature from the 1st encoder is fed to both the 1st decoder,
and the 2nd encoder. To further reduce the frame rate, we
add a buffer between 1st and 2nd encoders, to accumulate k2
frames, before sending to the 2nd encoder. As a result, the 2nd
encoder consumes k2 frames per output, and its output equiv-
alent frame length is `2 = k2`1 = k2k1`. The 2nd encoder is
streaming as well, but not causal. It has a right context of C
frames w.r.t. the output, and C frames correspond to a dura-
tion of Γ = C`2 = C × k2k1`. Similar to the 1st pass, the
2nd encoder’s output is sent to the 2nd decoder. As such, the
two encoder-decoder pairs form the cascaded system, where
the 1st pass (1st encoder + 1st decoder) is causal only whose
output frame length is k1`, while the 2nd pass looks into C
future frames with an output frame length of k2k1`.
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Fig. 1: Diagram of two-pass cascaded streaming ASR model.

Being causal only, the 1st pass generates hypotheses as
the speech signal is ingested, and outputs the transcript from
the beginning till the current time t. This unfinished transcript
is called a partial result. The 2nd pass runs C frames (or a
delay of Γ in time) behind the 1st pass. therefore the 2nd
pass is centered at t−Γ. Figure 2 illustrates the synchroniza-
tion of the two passes. When the utterance ends, the 2nd pass
pads fake frames (e.g. zero values, see Figure 4). After pro-
cessing, the 2nd pass outputs a final result, i.e. the complete
utterance’s transcript. Note that since the 2nd pass has future
context, its final result is generally more accurate than that of
the 1st pass. At a high level, when a user is speaking, partial
result is emitted; upon finishing, final result is outputted or
discarded, depending on the downstream applications.

In summary, k1 and k2 are the key hyper-parameters to
control the frame rate reduction factor. The higher they are,



the longer frame length that the model uses, and the less com-
putation needed to process the same length of the audio. The
drawback is that a long frame might lose the acoustic resolu-
tion, leading to possibly worse transcription quality. Another
disadvantage is that the long frame also increases the partial
latency, which could be essential for streaming applications.
In addition, the value of C (or Γ) determines the 2nd pass
delay, because the 2nd pass runs C frames behind.
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Fig. 2: The 2nd pass is running behind 1st pass by C stacked
frames, an equivalent Ck2k1` window length in time.

We propose two frame rate reduction strategies: 1) In-
crease k1 only – both passes run at a lower frame rate. This
saves computation for both passes. Another benefit is that
both passes are synchronized, such that their frame-wise out-
puts are easier to merge (e.g. for knowledge distillation pur-
pose). The disadvantage is that the low rate in the 1st pass
delays the partial result emission, which could lead to bad
user experience. Also, too much information is compressed
in the early layers, such that the transcription quality may be
impacted. 2) Set k1 to be small, and increase k2 for the 2nd
pass. This setting avoids increasing k1 to mitigate the partial
result delay problem so the partial latency won’t increase,
but at a cost of less computation savings.

4. EXPERIMENTAL SETUP

4.1. Model Setup

Both passes’ encoders are conformer based. Their archi-
tectures are similar: both have 6 multi-head-self-attention
(MHSA) conformer layers, where each has 23 frames left
contexts. Unless otherwise specified, the Funnel-attention
layer (the sub-sampling layer) is placed at the first MHSA
conformer layer, to maximize the computation savings (all
following layers can run at a lower rate). There are 8 atten-
tion heads in each attention layer. The 1st encoder’s feature
dimension is 512, while the 2nd’s is 640. The 1st encoder has
an additional 3 layers of convolution-only conformer layers,
before the 6 MHSA conformer layers. The two decoders are
light-weight and RNN-T based, as introduced in [13]. Within
each decoder, there is a 320-dimensional embedding predic-
tion network, plus a 384-dimensional joint network. After the
model trained with the RNN-T loss, we continue fine-tuning

the model with the minimum-word-error-rate (MWER) [28]
criterion. During training, FastEmit [20] is also applied.

The frontend takes 128-dimensional feature vectors from
log-Mel-spectrogram (10 ms shift) as input. Contiguous 4
frames are stacked as a 512-dimensional vector, concate-
nated with a 16-dimensional one-hot domain-ID (indicating
whether it is voice-search, dictation, or any other domain) to
form a 528-dimensional input frame. The input frames are
sub-sampled by a factor of 3 in the time axis. As a result, the
frame fed into the 1st encoder represents a length of ` = 30
ms, whose dimension is 528.

We replicate the baseline model in [10], which sets k1 =
2 (a sub-sampling factor of 2 in the 1st pass) and k2 = 1
(no further reduction in the 2nd pass). So both passes’ output
frame length `1 = `2 = 60 ms. The 2nd pass of the baseline
model has a delay of C = 15 frames, an equivalent Γ =
15 × 60 = 900 ms MHSA layers’ right-context.

To deploy the model on device, we perform 8-bit post-
training quantization (PTQ). In [10], PTQ is shown to have
no quality gap compared to the full precision counterpart. The
size of the two encoders (after PTQ) are 50 MB and 55 MB,
respectively. Both decoders are 4.2 MB. Note that the training
is in floating point, and all the following evaluations are us-
ing the quantized 8-bit model. The on-device benchmarking
platform is an Android smartphone with 12 GB memory.

4.2. Datasets
The training data is a collection of around 1.4 million hours of
English audio-text pairs. It is a multi-domain dataset, where
the majority are anonymous voice-search, voice-dictation and
long-form audio collections. We apply Multi-style Training
(MTR) [29] and Spec-Augmentation [30] to increase the data
diversity and prevent overfitting during training. To evaluate
the model performance in different scenarios, the testsets are
split into 3 groups that cover short to long utterances. Note
that the testsets are all human transcribed. The voice-search
(VS) testset has around 6k short query utterances, and the
voice-dictation (VD) testset contains 20k dictation utterances.
An additional 72 long-form (LF) test utterances are added to
evaluate long-form recognition. Our data handling abides by
Google AI Principles [31]. The average utterance lengths are
4.8 seconds for VS, 8.2 seconds for VD and 1032 seconds for
LF. We adopt word-piece tokenization [5] for all the experi-
ments, with a mixed-case vocabulary size of 4096.

4.3. Metrics
To evaluate the model, we define the following metrics. The
main quality metric is word-error-rate: WER = (S + I +
D)/N , where S, I,D are the number of substitutions, in-
sertions and deletions, respectively, and N is the number of
words in the reference. In the following sections, we measure
the WER from 2nd pass, i.e. the final result’s WER.

The benchmarking metrics are real-time-factor (RTF), fi-
nal latency (fLat) and power consumption (Power). RTF



and fLat are defined as:

RTF = Tproc/Tutt, fLat = tproc end − tutt end

where Tproc, Tutt are total processing time and utterance du-
ration, respectively. Note that RTF < 1, for real-time appli-
cations. tproc end and tutt end denotes the processing end time
and utterance end time. Therefore, the fLat measures the de-
lay from the utterance end, to when the recognition is finished
and the final result is generated. To reduce variance, the de-
vice’s power consumption is measured when the model recog-
nizes a long-form (14 minutes) utterance. Since smartphone
platforms’ power measurement is often noisy due to operating
system and other background tasks, the RTF is also a good ap-
proximation of the ASR model’s relative power consumption,
compared to the baseline model.

The other important latency metric is the partial latency
(pLat). Due to the lack of ground-truth alignment informa-
tion, we define a proxy to compare partial latency across
different models. Define the pLat as an average duration be-
tween partial result emitted and the utterance beginning:

pLat =
1

N

N∑
i=1

(tpartial emit[i] − tutt begin)

where N is the number of partials emitted in an utterance.
[NOTE] pLat itself does not reveal the token level latency
w.r.t. the ground-truth alignment, but we calculate the pLat
difference against the baseline setting where k1 = 2, k2 = 1.
The difference reflects the latency increase or decrease.
[NOTE] pLat is just a simple approximation because we
don’t take ground-truth into consideration. The failure case
can be, for instance, if one model has many insertion errors in
the beginning. That leads to many early partial results emis-
sions, resulting in a smaller pLat. Given that the models we
compare have similar WERs, the pLat can still be a reason-
able approximation to show the partial latency differences.
[NOTE] We report the average of the RTF, fLat and pLat.
fLat and pLat are in units of ms. Power is measured in mW.

5. EVALUATION RESULTS

We vary k1 and k2 values to achieve different frame rate re-
duction, and change C to control the 2nd pass delay. The
mean fLat of the baseline is 139 ms. The fLat and pLat of the
other models are reported using relative increase or decrease
(+/- x) against the baseline, for a better comparison.

5.1. Strategy 1: Increase k1

The first experiment examines different k1 values while keep-
ing k2 = 1 (no further reduction in 2nd pass). This setting
maximizes computation savings. In Table 1, we present the
testsets’ WERs as k1 changes. We put the corresponding out-
put frame length `1 beside the k1 values in the table, e.g. the
baseline model is with k1 = 2 and operates at output frame
length of 60 ms. The model with k1 = 4 operates at output
frame length of 120 ms.

Table 1: Strategy 1: Vary k1, when k2 = 1, C = 15. The
first column is the baseline. The higher k1, the better VS
performance and slightly worse VD / LF performance. Higher
k1 offers better RTF / Power, but worse fLat and pLat.

k1(`1) 2 (60ms) 4 (120ms) 6 (180ms) 8 (240ms)
VS 5.5 5.3 5.2 5.2

WER(%) VD 3.3 3.3 3.6 3.5
LF 15.7 15.9 18.4 17.1

RTF 0.087 0.06 0.051 0.047
Power (mW) 281 214 223 192

fLat (ms) +0 (139ms) +19 +25 +27
pLat (ms) +0 +160 +387 +433

From Table 1, a clear trend is observed that WER on VS
dataset decreases when k1 increases. This is counter-intuitive,
since we often expect a worse WER in a very low rate (e.g.
k1 = 8, equivalently 240 ms). The VD and LF testsets results
in Table 1 conform to this expectation but VS data behaves
as an outlier. The reason is that, VS utterances are typically
short, therefore the transcription quality is more sensitive to
the right-context length of the 2nd pass. As k1 increases,
the right-context duration Γ increases. For instance, when
k1 = 8, Γ = 3.6 s, which is close to the utterance length
(averagely 4.8 s). As a consequence, the model converges to
a full-context model, resulting in better quality. On the con-
trary, the Γ is still small relative to a longer utterance (e.g. in
VD and LF), so their WERs increase as k1 increases.

As Table 1 shows, when k1 = 4, VS result is 5% better
and VD / LF quality difference is negligible compared to the
baseline. The RTF gets reduced from 0.087 down to 0.06,
which means already a 30% computation savings. Even at
k1 = 8 (240 ms frame length), the WER degradation is only
6% on VD and 9% on LF datasets. But the RTF is only 0.047,
around 45% reduction from the baseline.

The cost to pay is the latency increase, on both fLat and
pLat. As k1 increases, fLat get up to 30 ms increase, which is
usually acceptable. The more critical problem is on the par-
tial latency. Each time, the 1st pass needs to wait until all
k1 input frames have arrived, before it can start processing.
Therefore, a larger k1 delays each partial result’s emit. As
shown in the Table 1, when k1 = 8, the pLat is increased by
around 430 ms. This amount of partial result delay signifi-
cantly hurts user experience in real-time applications.

Different Rate Reduction Layer Positions
In the previous experiments, the Funnel-attention layer
(where rate reduction happens) is placed at the 1st MHSA
conformer layer in the encoder. We can also put it at other
layers. It is expected that, the later layer we push the Funnel-
attention layer, the less computation savings, because layers
before it still run at a higher frame rate. However, a later
sub-sampling layer might benefits the quality, due to less
information loss from early MHSA layers.

In particular, we place the Funnel-attention at the first



and the last MHSA conformer layer (the 6th MHSA layer),
within the 1st pass encoder. In the rest of the paper, we use
2x2 to represent a down-sampling factor of 2 at the beginning
Funnel-attention layer, and another down-sampling factor of
2 at the ending Funnel-attention layer. Assuming input frame
length ` = 30 ms, starting from 2nd MHSA layer, the frame
length becomes 60 ms until the last MHSA layer, and 1st en-
coder output frame length becomes `1 = 120 ms. Similarly,
2x3 means down-sampling factors 2 and 3, for the begining
and ending Funnel-attention layers, respectively. As a result,
2x3’s `1 = 180 ms.

Constraint on Left and Right Context
It is worth pointing out that as k1 increases, since the 2nd
pass looks into C future frames, the effective future context
window Γ = C × k2k1` also expands. For example, if fix-
ing C = 15, when ` = 30 ms, as k1 increases from 2 to 8,
Γ changes from 900 ms to 3.6 s. This huge delay between
two passes could be unacceptable in certain use cases. For
instance, we may want to use the 2nd pass’s partial result to
timely correct the streaming transcription when we perform
the long-form recognition. One way to mitigate this is to re-
duce C, such that the right-context actual duration Γ remains
similar to the baseline, around 900 ms.

We evaluate on the following settings: when `1 = 120
ms (k1 = 4), let C = 8 (or Γ = 960 ms); when `1 = 180
ms (k1 = 6), let C = 5 (or Γ = 900 ms). Similarly, we
can also reduce the left-context frame number, to keep the to-
tal left-context duration of the MHSA layers to be ≈ 7.68 s.
The quality and efficiency comparison are shown in Figure 3,
while we present latency results in Table 2. In the follow-
ing, +RC means that we only constrain right-context to be
around 900 ms, and +LRC means we put constraint on both
left (around 7.68 s) and right-contexts (around 900 ms).
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Fig. 3: 2x2 / 2x3 puts rate reduction layers at both beginning
and end of the 1st encoder, and obtains better WERs than its
counterpart 4 / 6. Reducing the context window, +LRC is
generally better than +RC only, in both quality and efficiency.

We have two observations: 1) From Figure 3, as expected,

the later we push the frame rate reduction layer, the better
WERs we can obtain. 2x2’s WERs are better than 4’s, and
2x3’s WERs are better than 6’s. On the other hand, the layers
before the reduction layer run at a higher rate, leading to a
higher computation cost. Taking +LRC cases as the example,
power consumption for k1 = 2x2 is 195 mW, versus k1 = 4
at 193 mW. Similarly, 183 mW for the 2x3 setting, against
172 mW for k1 = 6. 2) Figure 3 and Tabel 2 show that +RC
saves computation and reduces fLat, while +LRC is even bet-
ter than +RC. Reducing right-context frame number C (+RC)
makes the model process fewer keys and values, leading to
less computations. This speeds up the final processing when
utterance ends, thus the fLat gets reduced. For instance, when
k1 = 4, without +RC, relative fLat is +19 ms (in Table 1,
2nd column). With +RC, it drops to -4 ms (in Table 2, 1st
column). For the same reason, reducing both left and right
contexts (+LRC) saves more computation. This is verified by
comparing the +LRC against +RC in Figure 3’s RTF / Power
plot. The pLat also becomes better when +LRC, but still high
due to the increase of the 1st pass frame length `1.

Table 2: Latency metrics for different reduction positions.

k1 4 2x2 6 2x3
+RC +LRC +RC +LRC +RC +LRC +RC +LRC

fLat -4 -9 -7 -14 -11 -12 -12 -16
pLat +124 +71 +116 +101 +182 +152 +107 +67

More interestingly, +LRC not only saves computation, but
also boost WERs (see Figure 3’s WER plot). Our hypothesis
is that, the baseline model (k1 = 2) already has 7.68 seconds
left-context. When k1 increases, e.g. to 6, the left-context
length becomes 23 seconds. The audio 23 seconds ago, might
not be helpful to the current frame. On the contrary, the long
history spreads the attention weights to the less useful his-
tory frames, distracting the model from focusing on nearby
important frames. This could explain the fact +LRC yields
better WERs, but a complete analysis is due to future work.

To highlight, the 2x3 +LRC model obtains a slightly bet-
ter WER than baseline (k1 = 2) on VS (5.3 vs 5.5) and LF
(15.2 vs 15.7), while similar on VD (3.4 vs 3.3). Meanwhile,
it achieves 0.048 RTF (saves 45%), 183 mW power consump-
tion (saves 35%), and -16 ms fLat (11% faster in the end). The
only drawback of this candidate is the +67 ms pLat, which
limits its usage on low-latency applications.

5.2. Strategy 2: Increase k2

To satisfy the partial latency requirements, we propose to
keep the 1st pass k1 = 2, the same as the baseline, such that
the partial results’ delay is not affected. Alternatively, we
reduce the 2nd pass’s frame rate by setting k2 = 2 to achieve
equivalent 120 ms output frame length.

Table 3 shows that, when we set k2 = 2, and apply +LRC,
we obtain a setting that yields the best trade-off among qual-
ity, power and latency. The same as before, +LRC (the 3rd
row) is generally better than that without constraints (the 2nd



Table 3: Strategy 2: Set k1, k2 = 2, 2 (`1, `2 = 60, 120 ms).
The first row is the baseline that k1, k2 = 2, 1.

VS VD LF RTF Power fLat pLat
k2 = 1 5.5 3.3 15.7 0.087 281 +0 +0
k2 = 2 5.4 3.3 15.8 0.073 252 +0 +12

+LRC 5.4 3.3 14.9 0.069 245 -26 +9

row). Compared to the baseline (the 1st row), on the qual-
ity side, k2 = 2 +LRC have similar (VS, VD) or better (LF)
WERs. The RTF goes down from 0.087 to 0.069, and 36 mW
power saving is observed. The fLat got reduced by 26 ms
(nearly 20% faster in the end). The pLat remains very close
to the baseline, so real-time requirements are satisfied.

5.3. Short Summary and Best of All

• For latency-sensitive scenarios, we propose k1 = 2, k2 = 2
+LRC, which has 5% WER improvement on LF, and simi-
lar WER on VS, VD. It saves 20% RTF / 13% power over
the baseline. fLat decreased by 20%. pLat remains similar.

• If allowing more partial latency , 2x3 +LRC gives best
power efficiency with 45% RTF / 35% power savings, and
no sacrifice on recognition quality, at a cost of +67ms pLat.

• Limiting left and right-context (+LRC) not only reduces
RTF, fLat and pLat, but also improves transcription quality.

• Later reduction layer position (e.g. 2x2, 2x3 settings) helps
on WER, with some extra computation costs.

5.4. Voice Activity Detection (VAD) Segmentation

For certain use cases, e.g. voice dictation, a Voice Activity
Detector (VAD) [32] could be enabled to stop ASR when long
silence / pauses happen in the middle of an utterance. The
benefit of VAD is to save computation and power consump-
tion for the silence or noise periods. However, this breaks the
continuous speech into segments. In order to keep the con-
text / history for better recognition quality, upon reaching a
new segment, the encoders and decoders of both passes re-
sume from frames and hypotheses of the previous segment.
Every time the cascaded system encounters a segment-end
boundary, the 2nd pass needs to pad fake frames to fulfill C
right contexts. But these fake frames, as the context across
segments, are not seen at training time, sometimes leading to
extra errors due to the discrepancy between training and infer-
ence. This segment boundary issue is illustrated in Figure 4.
Possible mitigation could be: (a) training data augmentation,
e.g. construct multi-segment data, with fake frames, or (b)
inference-time adjustment, e.g. pad real silence frames. Nev-
ertheless, they are beyond the scope of this paper. For sim-
plicity, we repeat the last real frame as the padding frames.

We present a comparison between turning off (blue) and
turning on VAD (+VAD, orange), in Figure 5. Note that VAD
segmentation is not applied to the VS dataset, which only has
one short query per utterance, so we show the WERs for VD
(upper plot) and LF (bottom plot) testsets. Clearly, turning on

1st 
encoder

k1

2nd 
encoder

k2

fake padding 
frames

… silence

segment 
i+1

…

last real frame 
of segment i

Fig. 4: At segment boundary, 2nd pass pads fake frames.

VAD (orange) causes a drop of quality. When applying +LRC
(green) if VAD is on, we can observe WER improvements.
We hypothesize that limiting the context window reduces the
number of padding frames, thus preventing the model from
spreading attention weights on the fake frames at the segment
boundaries. Needless to say +LRC also saves computations
as shown before.
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Fig. 5: Turning on VAD (orange) hurts WERs on VD (upper)
/ LF (bottom) testsets, for different k1, k2 settings. Constraint
on left and right context window length (+LRC, green, not
applicable when k1, k2 = 2, 1) recovers WERs slightly.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we systematically investigate frame rate reduc-
tion settings in the on-device cascaded streaming ASR sys-
tem. Particularly, we propose a low-latency candidate that re-
duces 2nd pass’s frame rate to 120 ms. It achieves better qual-
ity and efficiency at the same time, without hurting stream-
ing latency. We propose another low-power candidate whose
frame length is 180 ms starting from 1st pass. Though this
setting increases partial latency, it saves 35% power without
quality regression. We also have the following observations:
1. Up to 240 ms frame length, no significant quality drop is
observed. 2. Limiting left and right-context window dura-
tion, generally helps on all three aspects of quality, power and
latency. 3. Turning on VAD introduces a segment boundary
issue, leading to worse quality. Limiting the left and right-
context, again can help. We defer a deeper analysis on why
reducing context window is beneficial, to the future work.
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