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How the brain integrates signals from specific areas has been a
longstanding critical question for neurobiologists. Two recent observa-
tions suggest a new approach to fMRI data analysis of this question. First,
in many instances, the brain analyzes inputs by decomposing the
information along several salient dimensions. For example, earlier work
demonstrated that the brain splits amonetary gamble in terms of expected
reward (ER) and variance of the reward (risk) [Preuschoff, K.,
Bossaerts, P., Quartz, S., 2006. Neural differentiation of expected reward
and risk in human subcortical structures. Neuron 51, 381–390]. However,
since ER and risk activate separate brain regions, the brain needs to
integrate these activations to obtain an overall evaluation of the gamble.
Second, recent evidence suggests that the correlation of the activity
between neurons may serve a specific organizational purpose [Romo, R.,
Hernandez, A., Zainos, A., Salinas, E., 2003. Correlated neuronal
discharges that increase coding efficiency during perceptual discrimina-
tion. Neuron 38, 649–657; Salinas, E., Sejnowski, T.J., 2001. Correlated
neuronal activity and the flow of neural information. Nat. Rev. Neurosci.
2, 539]. Specifically, it is hypothesized that correlations allow brain
regions to integrate several signals in a way that minimizes noise. Under
this hypothesis, we show here that canonical correlation analysis of fMRI
data identifies how the signals from several regions are combined. A
general linear model then verifies whether the identified combination
indeed activates a projection area in the brain.We illustrate the proposed
procedure on data recorded while human subjects played a simple card
game. We show that the brain adds the signals of ER and risk to form a
measure that activates the medial prefrontal cortex, consistent with the
role of this brain structure in the evaluation of monetary gambles.
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Introduction

General linear models (GLMs) have been used extensively to
analyze functional magnetic resonance imaging data (fMRI) and to
map the human brain into regions that perform specific tasks
(Frackowiak et al., 2003). The fMRI amplitudes track the changes in
hemoglobin oxygenation (blood-oxygen-level dependent, or BOLD).
The BOLD signals can be related to the neuronal activity either
linearly, with a hemodynamic response function (HRF), or non-
linearly, with aBalloonmodel (Buxton andWong, 1998; Friston et al.,
2000). Additionally, experimental studies verified the relationship
between neurons' activity and fMRI data (Mukamel et al., 2005).
Experimenters analyze the data with GLMs that project the BOLD
signal onto a set of predictors designed after the stimulus set of an
experiment.

However, GLMs offer researchers limited insight into how several
areas interact. In particular, using GLMs does not reveal how infor-
mation is transmitted from one area to another or how information
frommultiple areas is integrated. They can help us understand “where”
but not “how”. To explain how areas interact, researchers have
designed new methods of analysis.

However, some of the new methods are limited because they
make no assumptions regarding underlying biological mechanisms.
Primary among these methods are principal and independent
component analysis (PCA/ICA) (McKeown et al., 1998). PCA and
ICA are further limited because they are exploratory and do not use
experimenter-defined predictors to test a priori hypotheses.

To address the limitations of PCA and ICA, structural equation
models (SEM) and dynamic causal modeling (DCM) were devised
(Friston, 2002; Goncalves and Hull, 2003). Researchers used both
methods to investigate effective connectivity (Frackowiak et al.,
2003), but withDCM, they specify amodel at the neuronal level, and
with SEM, they examine data at the level of fMRI (Penny et al.,
2004). In addition, researchers uncovered connections between
areas of the brain with psychophysiological interactions (PPI)
(Friston et al., 1997). A strength of DCM and PPI is that they can
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help researchers explain nonlinear effects in the brain, while all
previously mentioned methods rely on purely linear models.

DCM, PPI and SEM have two main drawbacks. First, DCM, PPI
and SEM, unlike GLMs, cannot be directly used to relate predictors to
specific experimental conditions. Even though this absence of
relationship between predictors and experimental conditions offers
more flexibility to explain changes in brain activity, it makes results
harder to interpret. Second,DCM, PPI and SEMworkwith predefined
regions. While they enable investigators to explain relationships be-
tween previously know areas, they cannot help to map new functions
in the brain.

Here we overcome these limitations with a novel application of a
proven method of analysis. Our application is based on general
biological observations. Specifically, evidence from direct neuronal
recording shows that neurons are sensitive to correlations in their
inputs (Salinas and Sejnowski, 2000; Shadlen and Movshon, 1999).
The hypothesis that these correlations reflect changes in connectiv-
ity was later proven experimentally with neuronal recording (Romo
et al., 2003). The idea was that neurons judiciously used the cor-
relations to combine afferent signals in a way that minimized noise
in the integrated signal. We propose here that one can exploit these
correlations with a method based on canonical correlation analysis
(CCA) in order to identify how neurons integrate signals (Anderson,
2003; Hotelling, 1936; Johnson and Wichern, 2002).

CCA is a statistical procedure that uses as input several
dependent variables (in the form of time-indexed vectors) and
several independent variables (also in the form of time-indexed
vectors). The output is a collection of weights for both the dependent
and independent variables. These weights are chosen so that the
correlation between the weighted sum of the dependent variables
and the weighted sum of the independent variables is maximized
(Appendix B).

In the context of our experiment, the dependent variables are
several predictors and the independent variables are recordings of the
neuronal activity in several brain regions. The predictors reflect the
signals that the neuronal activations are known to carry individually.
CCA identifies the particular combination of the signals that correlates
maximally with the joint activations across the regions. CCA exploits
the noise-minimizing correlations in baseline activations to effectively
“reverse engineer” the way neurons integrate the signals.

Because it is difficult to record neuronal activities in humans,
researchers usually record fMRI data instead. However, it is still
theoretically possible to detect correlation in neuronal activity with
CCA applied to fMRI data. Recent work has established a link be-
tween neuronal activity and fMRI recordings (Logothetis et al., 2001;
Mukamel et al., 2005). With simple mathematics (Appendix A) we
show that if the neuronal activity is directly related to the amplitudes
recorded with fMRI, then the correlations of neuronal activities are
also directly related to the correlations of fMRI time courses.

Even though CCA has already been used on fMRI data under the
name CVA (Friston et al., 1995) our method is fundamentally
different. Friston and colleagues first combined signals fromnumerous
voxels to create a much smaller number of signals (data reduction).
Then, they discovered new predictors by applying a CVA; but the data
reduction step prevents them from linking predictors to specific brain
regions. In contrast, we take a different approach.We base our method
on the specific hypothesis that particular brain regions integrate signals
in a way that minimizes noise, and we use CCA to exploit and test this
hypothesis.

The way we apply CCA has two distinct advantages. First, we
use predictors in the same way as we would have with GLMs. This
approach makes the results easy to interpret by directly relating
predictors to both the experimental conditions and to specific brain
areas, unlike DCM, PPI and SEM. By examining areas and
predictors, we can test falsifiable hypotheses on the role of brain
areas. Second, with our approach to CCA, we can map new func-
tions in the human brain, unlike DCM, PPI and SEM. As we will
show in the Materials and methods section, CCA creates a new
“composite” predictor that makes explicit how neurons combine
their inputs. By introducing this new predictor in a post-CCA GLM
and performing a whole-brain analysis, we can map the composite
predictor to a new brain area.

The post-CCA GLM also helps us to validate our analysis. If the
composite predictor recovered through CCA does not significantly
correlate with the activity of any brain region, then the negative result
will cast doubt on the validity of themethodwe propose. Indeed, if we
observe correlations in the CCA step but no area is activated in the
GLM step, we should conclude that the correlations do exist but that
neurons do not use them to integrate signals. In other words, we
should reject the hypothesis onwhich ourmethod of analysis is based.

Materials and methods

Overview

Our method consists of three steps (Fig. 1). In the first step, we
average the fMRI time courses (time-indexed vectors containing the
amplitudes of the BOLD signal) of several voxels for each regions of
interest. These fMRI time courses contain two types of signals—the
signals of interest that wewish to investigate and “extraneous” signals
that we wish to ignore (such as those caused by instruction text on the
screen or an image). To remove these extraneous signals, we compute
adjusted time courses, i.e., the residuals of linear regressions con-
taining the predictors that correspond to these extraneous signals. The
residuals are orthogonal to the extraneous signals but still contain the
signals we wish to investigate (Weisberg, 2005). The residuals are the
input of the second step, where we use CCA to test the hypothesis that
neurons use correlations to combine the signals of interest. The CCA
step yields a new composite predictor, and in the third step, we use this
new predictor in a post-CCA GLM to determine the location of a
downstream area where the combined signals of the upstream areas
can be said to be projected. The post-CCA GLM is a whole-brain
exploration of regions whose activations reflect encoding of the
combined signal communicated through joint activation of the regions
of interest.

To illustrate our method, we analyze the integration of signals
related to reward and risks in a simple monetary gamble. We use data
from a previous study that found that the two key features of a gamble–
its expected reward (ER, measured as the statistical mean of the
payoff) and its risk (measured as the statistical variance of the payoff)–
activate distinct areas of the brain (Preuschoff et al., 2006). We call
these areas upstream regions, andwe use a CCA to investigate how the
brain integrates the two features of the gamble to generate a single-
dimensional metric. We then check with a GLM that the predictor
corresponding to this new metric activates a downstream area.

Correlation hypothesis

In this section, we present the biological rationale for the method
we use. For simplicity, we limit ourselves to the case where the
downstream region recombines only two upstream activities, recorded
as fMRI time courses y1 and y2 (both vectors of T time samples). We



Fig. 1. Overview of the process. With a three-step method, we discover how
several “upstream” brain areas may project their combined signal to a
“downstream” area (purple arrow). The first step (black section) removes the
effect of extraneous predictors (such as visual, or motor) from (in this case)
three regions of interest (upstream regions) and generates adjusted time
courses (residuals of linear regressions). These adjusted time courses, along
with the predictors of interest, are the input of a CCA (second step, blue
section; see also Appendix B) that generates a set of weights (a1 and a2) that
in turn are passed onto the third step (red section). In this last step, we
examine every voxel within a candidate downstream region of the brain with
a GLM composed of extraneous predictors as well as the newly created
predictor (U1=a1x1+a2x2). A predictor U2 is added to correct for the mis-
estimation of the weights (see Appendix D).
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model each yi (i=1, 2) as the sum of a (predictor) signal induced by the
experiment xi (without loss of generality, we do not assign a weight), a
noise term ỹi that is possibly correlated with the one in other regions,
and a second, Gaussian noise term ni, assumed to be independent
across voxels:

yi ¼ xi þ ỹi þ ni:

In traditional GLM analysis of fMRI data, the (correlated) noise
term ỹi and the (uncorrelated) noise term ni are combined together,
and any correlation (across regions) of the ỹi components is ignored.
Here we do not make this simplification and instead assume a factor
structure on noise, with ỹi representing the influence of the common
factor. We then exploit the correlation of the ỹis across regions.

The correlations of the ỹi’s are conjectured to ensure maximum
signal-to-noise ratio when the signals encoded in the individual
activations are combined (Romo et al., 2003; Salinas and Sejnowski,
2001). For example, if there is a negative correlation, the brain will
cancel out some of the effect of the ỹi’s when adding the activations.
That is, if the joint activation is to reflect, with minimal noise, the
summation of the signals encoded in the separate activations, then
the ỹi’s ought to be negatively correlated. Similarly, if there is a
positive correlation between the ỹi’s, their effect is diminished when
the brain subtracts the activations.
Mathematically, we assume that the brain combines activations
in a way that minimizes noise. Specifically, given the signal a1x1+
a2x2 that needs to be encoded, the brain implements corr(ỹ1,ỹ2)
such that it maximizes the correlation between the combined signal
and the combined activations:

max
corr ỹ1; ỹ2ð Þ

corr a1x1 þ a2x2; b1 x1 þ ỹ1 þ n1ð Þ þ b2 x2 þ ỹ2 þ n2ð Þð Þf g:

While not made explicit in the mathematical notation, the max-
imization takes into account physiological constraints.

Here we propose to use CCA to estimate the combined signal
a1x1+a2x2. As researchers, we know neither the weights a1 and a2
nor the weights b1 and b2. However, we can exploit the correlation
between the ỹi’s and infer these weights using canonical cor-
relations analysis (CCA).

Use of CCA to discover the weights

CCA (Johnson andWichern, 2002) is a standard statistical method
that, like the conjectured computations in the brain, also maximizes
correlation; only, it takes as given the correlation between the ỹi’s
while determining theweights a1, a2, b1 and b2, instead ofmaximizing
this correlation given the weights. Specifically, CCA solves the
following maximization problem:

q ¼ max
a1;a2;b1;b2

corr a1x1 þ a2x2; b1 x1 þ ỹ1 þ n1ð Þ þ b2 x2 þ ỹ2 þ n2ð Þð Þf g:

Standard CCA in fact provides two solutions to this maximiza-
tion: one solution that maximizes the correlation in an unconstrained
fashion and a second solution with a (generically lower) correlation
given orthogonality constraints on the signal and activation com-
binations relative to those obtained in the first solution. When there
are n predictors xi and p fMRI time courses yi, there will be min(n, p)
solutions.We are only interested in the first solution, i.e., the one that
maximizes correlation in an unconstrained fashion. At one point,
however, we will use the second solution in order to minimize the
effect on inference from noise in estimating the coefficients for the
first solution.

Inference techniques have been devised to test the significance of
the estimated maximum correlation ρ (Anderson, 2003). We are also
interested in testing that each of the weights a1, a2, b1, and b2 is
significantly different from zero. If any of the weights (in this 2-by-2
situation) is zero, then one cannot meaningfully speak about the brain
“combining signals” (if one of the ai’s is zero) or “combining acti-
vations” (if one of the bi’s is zero). One of b1, b2 will automatically be
significant because the signals/predictors were chosen because they
activated at least one region of interest (see alsoAppendixC). The real
import is when both b1 and b2 are significant. We present a technique
(see Appendix B) that tests the null hypotheses that the weights
(separately) are zero.

Using GLM to identify projection areas

Once we identify the signal combination a1x1+a2x2, we can
localize a candidate for the projection area by using a GLM that
includes a1x1+a2x2 as a predictor (in addition to the usual ex-
traneous predictors). Obviously, if we do not find any plausible
projection, we will reject the principle underlying the prior CCA
step. While significance in the canonical correlations analysis would
imply that there are correlations, the absence of a projection area
suggests that the brain does not use these correlations to direct
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projection of the identified signal combination onto some down-
stream region.

We identify brain regions that activate significantly in the post-
CCA GLM as “downstream” areas, to which the regions of interest
project or which are activated by the regions of interest. As with any
correlation-based procedure, one should be careful with interpreta-
tions that imply causality or directionality. However, the predictors
(signal combinations) in the post-CCA GLM are identified by joint
activation of only the regions of interest. That is, the brain regions
eventually uncovered in the post-CCA GLM are not involved in this
identification process. As such, the correlations obtained in the post-
CCAGLM step are causality (or directionality) in the Granger sense
(Granger, 1969).

Why CCA is useful

While the post-CCAGLM is a projection of brain activations onto
the recovered signal combination a1x1+a2x2, it is not equivalent to a
GLM where x1 and x2 are used as separate predictors. Our post-CCA
GLM has higher statistical power, and Appendix D shows that one
would need at least twice as many subjects to make up for the loss of
power when not using the CCA-based GLM.

However, the advantages of our method go beyond statistical
considerations. Our procedure is primarily useful from a neuroscience
perspective. Had we improved the statistical power by increasing the
number of subjects instead of using CCA, we could not have
discovered that the brain integrates activations from separate regions.
Instead, with standard GLM and additional subjects, we would only
have found overlapping localization, i.e., the activity in the projection
area would have correlated significantly with both predictors.

Instrumental variable estimation

In the post-CCA GLM, we use the estimated combination a1x1+
a2x2 as predictor. Tomitigate noise in estimation of this predictor, we
apply a method similar to, but different from, instrumental variables
estimation (Spanos, 1986). In addition to a1x1+a2x2, we add a
second predictor to the post-CCAGLM.We had several options, but
we show in Appendix E that the most effective choice is the second
combined signal uncovered by the CCA.

Traditional application of CCA actually produces several
solutions. Only the first one gives maximum correlation (between
combinations of activations and combinations of signals), and only
this first solution has been used in our method up to now. The second
solution, however, while producing lower correlation, provides a
combined signal that is uncorrelated with that of the first solution,
yet it is affected by the same estimation error. Appendix E shows that
the latter can be exploited to reduce the impact of estimation error in
the post-CCA GLM.

Incidentally, adding this second predictor provides an additional
check on the validity of the entire procedure. If the signal com-
bination identified in our CCA step truly represents the activity of
the downstream region, then only it should correlate significantly
with activation in that region; the correlation with the predictor
added in the post-CCAGLM to mitigate errors-in-variables ought to
be insignificant.

Removal of extraneous predictors

Prior to implementingCCA,we need to remove from the upstream
activities the influence of extraneous predictors (predictors that are not
part of the hypothesized signal recombination). Without this removal,
these extraneous predictors may spuriously generate erroneous results
when using CCA because at least one of these extraneous predictors
may correlate with several upstream regions simultaneously.

We remove the influence of the extraneous predictors by using
“adjusted time courses” in CCA. Specifically, prior to CCA,we run a
linear regression on the activations of each upstream region that
contains extraneous predictors that may simultaneously correlate
with more than one region of interest. The residuals of these linear
regressions provide the adjusted time courses. By construction, they
are orthogonal to the extraneous predictors, and hence, they are not
correlated across regions because of potential common influence of
extraneous predictors.

Results

Experiment

To illustrate implementation of our procedure, we analyzed the
data from a previous experiment involving a simple card game
(Preuschoff et al., 2006). In modeling joint brain activation, expected
reward (ER) and reward variance (risk) are the two main predictors of
interest. They correspond to the variables x1 and x2 in the description
of our procedure. The experimental paradigmwas such that these two
predictors were orthogonal. ER had been found to correlate with
activation in certain subcortical regions (ventral striatum; putamen)
while risk correlated with activation in insula. Our implementation of
CCA allowed us to investigate to what extent there was a combined
signal in joint activation of ventral striatum, putamen and insula; to
identify its nature; and to localize potential projection regions.

We first averaged the signal of 30 voxels in the three regions of
interest: ventral striatum (Talairach coordinates −12; 5; −3), putamen
(−22; −8; 8) and insula (−31; 21; 9). Subsequently, we removed the
influence of extraneous predictors (visual effects, win/loss predictors,
decision and motor related effects, and a constant, all constructed as
explained in the original study) using a linear regression. We thus
obtained three adjusted time courses, which we denoted with yi
before. We then applied CCA to these yi. Thus, we computed the
weights on the adjusted activations yis and on the predictors xi that
provided maximum correlation.

We implemented two versions: heterogeneous weights (where
the weights varied across subjects) and homogenous weights (where
the weights were fixed across subjects).

Finally, we ran random-effects GLM on activation in a large area
of the brain that we hypothesized to include potential projection areas
of the combined signal inferred through CCA. In this post-CCA
GLM, we included the combined signal from the CCA step (and an
additional regressor to mitigate errors-in-variables in this predictor, as
explained in the Materials and methods section) as well as extraneous
predictors.

CCA results

With heterogeneous weights, CCA generated identical (taken as
positive) weights on both ER and risk for 14 out of 19 subjects
(Table S1). The ER and risk predictors are orthogonal. Consequently,
under the null hypothesis that there is no correlation between some
combination of ER and risk and some combination of activation in the
three regions of interest, the probability of obtaining two positive
weights on a single subject is 0.5 (see Appendix C). A binomial test
then predicts that the probability of finding two positiveweights for 14



Table 1
Results of the CCA computation

Overall p-valueb10−7

Weight p-value Predictor/adjusted
time course

Talairach

x y z

a1=32 b10−7 ER
a2=65 b10−6 Risk
b1=0.24 b0.01 Putamen −22 −8 8
b2=0.45 b10−7 Ventral striatum −12 5 −3
b3=−0.22 b0.0002 Insula −31 21 9

CCAweights for predictors and adjusted time courses, homogenous weights
across 19 subjects. The overall significance, computed with Wilks' lambda
(Anderson, 2003), is pb10−7; each predictor and each adjusted time course
are separately significant (see Appendix B for the computation of p-values).
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out of 19 subjects under the null hypothesis is less than 0.032. Hence,
we reject the null of no correlation, in favor of the alternative of
significant correlation with a combined signal where both ER and risk
have positive weights.

With the evidence of positive weights on ER and risk, we reran
CCA with homogenous weights across subjects (see Table 1). We
found the correlation between the combination of the two predictors
and the joint activation in the regions of interest to be highly significant
(pb10−7). Moreover, we estimated that the following combined sig-
nal: 32 ER+65 risk.We found that theweights on the brain activations
were all separately significant (pb0.01); this confirmed that all regions
of interest contributed to the signal combination.
Identifying a potential projection region

In order to localize the downstream area where the combined
signal of ER and risk may be projected, we performed a random-
effects GLM analysis with the combined signal of ER and risk as one
Fig. 2. Activation of the downstream area. (a) Activation that correlates significant
putamen, ventral striatum and insula. The area extends for 11 voxels (3×3×3 m
p(uncorrected)b0.001). (b) Plot of the mean activation of the region depicted in (a)
positive sign. The inverted U shape shows that the area encodes risk positively. Howe
p=0.5, while it is not: it is higher for corresponding probabilities of reward above 0.
increasesmonotically in reward probability). Hence, the activation pattern reflects a w
tolerant agent).
of the predictors. We used the version of this combined signal
obtained from CCA, with weights estimated separately for each
subject (Table S1). We only used the 13 subjects for whom the
weights on ER and risk were of equal sign and significant (based on a
p-value for Wilks' lambda for single comparison and single subject
b0.10; high threshold reflects only the quality of the signal and is
only used to identify subjects to be included in the downstream area
activation analysis. We focused onmedial prefrontal cortex (mPFC).

mPFC was identified as potential projection area because our
combined signal was a metric that integrated ER and risk, and as
such, reflected a value index that had been shown in at least one
prior study (Tobler et al., 2007) to correlate with mPFC activation.
When subjects are risk tolerant, this value index coincides with the
expected utility index of economic theory (Von Neumann and
Morgenstern, 1944).

Metrics that are increasing in their components have also been
proposed in the game theory literature to evaluate the amount of
competition that exists between two antagonists (Esteban and Ray,
1999). Thus, the metric that we identified through our application
of CCA could alternatively be interpreted as a conflict metric. This
interpretation would suggest that the brain values gamble in terms
of conflict between their salient features (in this case, expected
reward and risk).

Consistent with our conjecture, the post-CCA GLM revealed
significant activation to the combined predictor in the mPFC (Fig. 2,
cluster of 11 voxels (3×3×3 mm3) around the center (1, 51, −3) in
Talairach coordinates, threshold at p(uncorrected)b0.001). The
mPFC did not significantly activate to the second predictor or to ER
or risk.

Robustness checks

We found qualitatively similar results (see Supplementary data)
with fixed CCAweights across subjects and with CCAweights that
were estimated after removal of the serial correlation in the ad-
ly with the combined signal of ER and risk inferred from joint activation of
m3) around the center (1, 51, −3) in Talairach coordinates (threshold at

against the probability of winning. The mPFC encodes both ER and risk with
ver, for the activation to solely encode risk, it ought to be symmetrical around
5. The asymmetry reflects the additional influence on activation of ER (which
eighted sumof ER and risk, as if encoding the utility of the gamble (for a risk-
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justed time courses by means of auto-regressive models (Burock
and Dale, 2000). Finally, to check that our findings were not an
artifact of correlation induced by the recording system, we
removed the first principal component of the adjusted time courses
(computed with singular value decomposition) before performing
CCA and obtained similar results as well.

Discussion

We introduced here a new method to analyze imaging data based
on the hypothesis (Salinas and Sejnowski, 2001), later confirmed
(Romo and Schultz, 1990), that neurons exhibit correlated activation
in order to direct the integration of signals with minimal noise. We
used CCA to reverse engineer this process and to discover how the
brain integrated signals. By adding the uncovered combination as
predictor in a post-CCA GLM, we identified projection regions and
thus verified that the combination of signals was indeed represented
in some downstream region.

As an illustration of this approach, we analyzed fMRI data from an
experiment involving a simple card game. Prior results indicated that
expected reward (ER) and reward variance (risk) were separately
encoded in the brain. Our application of CCA indicated that the
correlation of the corresponding signals directed the addition of ER
and risk to form an integrated signal that activated a third region,
namely, mPFC.

Our finding that mPFC activation correlates with the specific
combination of ER and risk reflected in joint activation of striatal
areas and insula extends our understanding of the role of this
cortical region in evaluation of gambles. In a prior study (Tobler
et al., 2007), this region had been shown to correlate with both ER
and risk, thus establishing its role in overall valuation. In a similar,
purely imperative, task, we here show that mPFC correlates with a
metric of ER and risk that we extracted from joint activation in
ventral striatum, putamen and insula, suggesting that the origin of the
value signal in mPFC lies in signal combination of these upstream
regions.

In economic theory, value signals presuppose choice. In our
paradigm, however, there is no choice in or after the epoch during
which we study brain activation. Still, standard economic valuation
signals in the brain have been observed before in purely imperative
trials (Tobler et al., 2007).Moreover, valuation signals from imperative
trials are relevant for choice analysis. In fact, they can provide better
predictors of choice in subsequent free-choice test trials than choices in
free-choice training trials themselves (Berns et al., in press).

CCA complements existing fMRI analysis approaches. Methods
such as PCA, ICA, and CVA are exploratory, and like our application
of CCA, they allow us to reveal functional connections in the brain.
With DCM, SEM, and PPI, nonlinear connectivity can be in-
vestigated, unlike with CCA. CCA, however, is based on a known
biological mechanism, namely, correlation of activation. In addition,
CCA improves on both hypothesis-driven GLM analyses and data-
driven techniques such as PCA.

Specifically, our application of CCAgeneralizes GLMs: instead of
investigating the relationship between several predictors and a single
voxel, the CCA approach allows one to model the relationship be-
tween several predictors and several voxels. At the same time, our
approach is a form of “guided” PCA: predictors are included in the
analysis in order to obtain meaningful results.

In this study, we only explored implications of across-region cor-
relation with the purpose of improving signal integration. Correla-
tion may play many other roles, both within and between neuronal
populations (Averbeck et al., 2006). Still, even though the wider role
of correlation in the brain is being debated, various independent
observations support our hypothesis that correlation may direct
integration. First, correlation goes hand-in-hand with performance
(Hummel and Gerloff, 2004; Stopfer et al., 1997), e.g., reports that
correlations are indispensable for efficient sensory perception by
honeybees. Second, memory is impaired in rats when correlation is
disrupted (Robbe et al., 2006). Third, in normal humans, face
perception appears to induce correlations that can be recorded with
EEG, but when this correlation is disrupted, the integration of signals
no longer works optimally and performance decreases (Rodriguez
et al., 1999). Finally, the fact that lower attention level down-
modulates correlation (Steinmetz et al., 2000) is consistent with our
hypothesis that correlation improves signal integration, and hence,
task performance.

Our use of CCAhas limitations. First, it cannot exploit correlations
within a population. Theoretical boundaries limit the role of intra-
population correlation to a group of about 100 neurons (Abbott and
Dayan, 1999; Schneidman et al., 2006; Shadlen andNewsome, 1994),
too small to be recorded and analyzed with fMRI. As such, we cannot
use CCA to investigate, e.g., the role of correlation to improve pop-
ulation coding. Second, CCA imposes a linear model: CCA will
discover signal integration only if the downstream area receives a
weighted sum of the inputs from the upstream regions and, as with
GLMs, the HRF function links the neuronal level to the fMRI
amplitude in a linear fashion. Third, because it is based on correlation,
CCA can only suggest connectivity, and not prove it. This is, of
course, a common drawback of correlation-based approaches (such as
GLM). Finally, the brain may use other biological mechanisms
besides correlation in activation to direct integration. Our method
would fail if this is the case.

The application of our CCA-based procedure to a neuroeco-
nomic experiment confirms its potential to study signal integration.
Signal integration is a general problem that the brain confronts, and
as such, it is hoped that our method can be successfully applied to
problems beyond the present experiment.
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Appendix A. Effect of the HRF

In this appendix, we show that, if neuronal activities are directly
related to the amplitude recorded with fMRI, then correlations of
the neuronal activities translate to correlations of fMRI time
courses. We do not make a distinction between the correlation in
the input, as measured by local field potentials (LFP) (Logothetis
et al., 2001), or in the output, as measured by firing rate (Mukamel
et al., 2005). In our framework, these correlations are present
in both input and output. Moreover, because we average
signals over large region of interest, the time courses we record
reflect the intracortical processing rather than either the input or the
output.

Let z1(n) and z2(n) be two signals of average neuronal activity in two
regions of interest (where the subscript indexes the region of in-
terest while n denotes time). Time courses in fMRI do not reflect z1(n)
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and z2(n) but represent a version smeared by a hemodynamic response
function (HRF) h(d ). Given the observations of Mukamel et al., the
fMRI signals yr(n) relate to the corresponding average neuronal acti-
vations zr(n) (r=1,2) as follows: yr nð Þ ¼ P

i zr ið Þh n� ið Þ (standard
convolution).

Without loss of generality, let z1(n) and z2(n) be stationary and
have zero mean. Our approach focuses on their stationary correla-
tion at times m and n, ρneuron(m,n), defined by:

qneuron m; nð Þ ¼ E z1 nð Þz2 mð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E z1 nð Þz1 nð Þ½ �p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E z2 mð Þz2 mð Þ½ �p :

The issue is: can we recover this correlation with fMRI data
recording?

For simplicity, we suppose that this correlation exists only at
simultaneous time samples. This hypothesis is not as restrictive as it
seems; in case there is some temporal dependency (Salinas and
Sejnowski, 2002), one can incorporate it by replacing h(n) with h(n)
convolved with a function that models this temporal dependency.
That is,

qneuron m; nð Þ ¼ q0d n� mð Þ;

where

d n� mð Þ ¼ 1 if n ¼ m
0 otherwise

:

�

Let ρfMRI(m,n) be the correlation between observations at times
m and n of the corresponding fMRI signals for the two regions of
interest, y1(n), y2(n). Specifically:

qfMRI m; nð Þ ¼ E y1 nð Þy2 mð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E y1 nð Þy1 nð Þ½ �p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E y2 mð Þy2 mð Þ½ �p :

We show now that the correlation at the neuronal level, namely,
ρneuron(m,n), is equal to the correlation readily computed from the
fMRI signals, namely, ρfMRI(m,n). More specifically, we shall show
that ρfMRI(m,n)=ρneuron(m,n) for m=n. First, express ρfMRI(m,n) in
terms of average neuronal activations:

qfMRI m; nð Þ ¼
E ðP

i z1 ið Þh n� ið ÞÞ P
j z2 jð Þh m� jð Þ

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ðP

i z1 ið Þh n� ið ÞÞ2
� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
P

j z2 jð Þh m� jð Þ
� �2

� �s :

For m=n, and by using the fact that E z1 ið Þz2 jð Þ½ � ¼ 0 if i p j we
have:

E ðP
i z1 ið Þhðn� iÞÞ P

j z2 jð Þh n� jð Þ
� �h i

¼ P
i

P
j h n� ið Þh n� jð ÞE z1 ið Þz2 jð Þ½ � :

¼ E z1 nð Þz2 nð Þ½ �Pk h kð Þ2

Similarly:

E ðP
i z1 ið Þh n� ið ÞÞ2

� �
¼ P

i

P
j h n� ið Þh n� jð ÞE z1 ið Þz1 jð Þ½ � ¼ E z1 nð Þz1 nð Þ½ �Pk h kð Þ2:

E
P

j z2 jð Þh n� jð Þ
� �2

� �
¼ P

i

P
j h n� ið Þh n� jð ÞE z2 ið Þz2 jð Þ½ � ¼ E z2 nð Þz2 nð Þ½ �Pk h kð Þ2;
So,

qfMRI n; nð Þ ¼ E z1 nð Þz2 nð Þ½ �Pk h kð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E z1 nð Þz1 nð Þ½ �Pk h kð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E z2 nð Þz2 nð Þ½ �Pk h kð Þ2

q ;

qfMRI n; nð Þ ¼ E z1 nð Þz2 nð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E z1 nð Þz1 nð Þ½ �p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E z2 nð Þz2 nð Þ½ �p ¼ q0:

Thus, by computing the correlation at the fMRI level, we can
recover the correlation between average neuronal activity:

qfMRI n; nð Þ ¼ qneuron n; nð Þ:

Appendix B. CCA and inference

We show here how to obtain p-values for the weight of the CCA.
Although the Wilks' lambda method (Anderson, 2003; Johnson and
Wichern, 2002) computes a p-value for each row of the CCA (a row is
defined as a set of weights for a solution to CCA), to the best of our
knowledge, no exactmethod exists to compute p-values for theweights
separately.Moreover, approximation with resamplingmethods such as
theBootstrap (Efron andTibshirani, 1993) is impractical because of the
sign ambiguity when computing an eigenvector. Instead, we present a
method for computing approximate p-values that is based on equiv-
alence between CCA and linear regression.

Let X be a (T;n) matrix containing T time samples of n predictors
andY be a (T;p) matrix of T time samples of the time course signal of
p regions of interest in the brain. Let Σ11 and Σ22 be the sample co-
variance matrices ofX andY, respectively andΣ12=Σ21′ the covariance
matrix between X and Y. For simplicity, all vectors have zero mean.

Canonical correlation finds the linear combinations of the
column vectors of X and Y that maximize their correlation, i.e., we
look for vectors a and b that give the largest value of:

q ¼ aVΣ12bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aVΣ11a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bVΣ22b

p :

Following the derivations of Johnson and Wichern (2002), we
perform a change-of-basis:

c ¼ Σ1=2
11 a;

d ¼ Σ1=2
22 b ;

which produces:

q ¼ cV∑�1=2
11 ∑12∑

�1=2
22 dffiffiffiffiffiffiffi

cVc
p ffiffiffiffiffiffiffiffi

d Vd
p :

By the Cauchy–Schwarz inequality:

qV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cV∑�1=2

11 ∑12∑
�1=2
22 ∑�1=2

22 ∑21∑
�1=2
11 c

q ffiffiffiffiffiffiffiffi
d Vd

p
ffiffiffiffiffiffiffi
cVc

p ffiffiffiffiffiffiffiffi
dVd

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cV∑�1=2

11 ∑12∑
�1
22 ∑21∑

�1=2
11 c

cVc

s
:

Equality obtains whenΣ22
−1/2Σ21Σ11

−1/2c and d are collinear. The
rightmost expression of the equation above is the square root of a
Rayleigh quotient and is maximized when c is the eigenvector
corresponding to the largest eigenvalue ofΣ11

−1/2Σ12Σ22
−1Σ21Σ11

−1/2.
Wilks' lambda approximation tests the significance of the correlation
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(Anderson, 2003). The computed canonical variables are two (T:1)
vectors:

U1 ¼ Xa ;

V 1 ¼ Yb :

Closer inspection reveals that the vector b can be recovered using a
linear regression ofU1 ontoY. Indeed, the ordinary least mean square
regression (Johnson and Wichern, 2002) gives:

b̃ ¼ YVYð Þ�1 YVU1ð Þ ¼ YVYð Þ�1 YVXð Þa :

By substituting sample covariance matrices, we get:

b̃ ¼ Σ�1
22 Σ21a ; b̃ ¼ Σ�1

22 Σ21Σ
�1=2
11 c;

b̃ ¼ Σ�1=2
22 Σ�1=2

22 Σ21Σ
�1=2
11 c; b̃~Σ�1=2

22 d; b̃~b:

We can use the above result to obtain approximate p-values for
the elements of b. Since for a given a, a GLM and CCA are
equivalent, we can apply the standard test for GLM (Johnson and
Wichern, 2002; Weisberg, 2005). It is simple to extend this to the
case where the eigenvalue is not the one of maximum magnitude
(i.e., in testing the significance of weights in the other rows of the
CCA). By symmetry, this method applies to the p-values of a as well.

In standard tests, the regression matrix Y is non-random. Hence,
we can only infer approximate p-values for a. The same problem
emerges when we use X to compute p-values for b. Our approach
is useful nevertheless for the analysis of the results of CCA.
Fig. A1. Why CCA is useful. Graphical representation of the third step of
our method (see red section of Fig. 1). Instead of using a GLM to project the
activity of a downstream area, y, onto the original basis (given by the
variables x1 and x2), we use the basis suggested by the CCA (U1 and U2).
Since the recordings are noisy, the predictor U1 and the activation y are not
exactly collinear but the angle between them is small (ε≈0). Using the new
basis, the projection of y onto U1 (kCCA) is larger than either of the two
original projections (with coefficient a11⁎ for x1 and a21⁎ for x2), and hence it is
less sensitive to noise. To mitigate the effect of misestimating (ε≠0), we add
a predictor. For optimality reasons (Appendix D), we choose the second
CCA solution, namely, U2, which is orthogonal to U1.
Appendix C. Distribution of sign of weights on predictors
under the null hypothesis

In this appendix, we follow the same notation as in Appendix B.
We restrict ourselves to the case of two predictors and two adjusted
time courses. We also restrict ourselves to the design matrices of the
experiment in the empirical application, where the predictors were

orthogonal. That is, we have Σ11 ¼ 1 0
0 1

� �
; for simplicity, we nor-

malize so that the variance of the predictors equals one. Ignoring

sampling error, we also have: Σ22 ¼ 1 q
q 1

� �
, where ρ is the correlation

of the ỹi’s. Finally, simple computations produce: Σ21 ¼ 1 0
0 1

� �
. Fol-

lowing the derivations of Appendix B, c=Σ11
1/2a is the eigenvector

corresponding to the largest eigenvalue of Σ11
−1/2Σ12Σ22

−1Σ21Σ11
−1/2.

With the above restrictions, this simplifies to a being an eigenvector
of 1

1�q2
1 �q
�q 1

� �
.

In case ρN0, the largest eigenvalue is 1þ q=1� q2 and the cor-
responding eigenvector is [1−1]′. Incidentally, the signs of the elements
in this vector are as predicted: under positive correlation between the
ỹi’s, CCA recovers a signal combination with opposite weights; this
reverse engineers the hypothesized brain process: in order to minimize
the effect of the ỹiwhen it subtracts two signals, the brain needs the ỹi’s
to be positively correlated between the ỹi. Conversely, if ρb0, the
eigenvalue and eigenvector are 1� q=1� q2 and [1 1]′. If no
correlation exists (null hypothesis; ρ=0), sampling error will never-
theless tilt the results toward either a=[1 1]′ or a=[1 −1]′; tilting in
either direction will happen with a probability of 0.5. This observation
provides the basis for hypothesis testing: across subjects, the tilting
follows a binomial distribution with mean 0.5. This implies that we
expect the weights on the predictors to have the same sign for roughly
half the subjects and the opposite sign for the other half.
In the more general case where the predictors are not normalized
to 1, CCA will always find a significant correlation, effectively
recovering the predictor/region of interest pair that had the highest
correlation in the standard region-by-region GLM with which the
regions of interest were determined in the first place. The signs of
the weights on the other pair will be random. This again implies that
we expect the weights on the two predictors to have the same sign
for roughly half the subjects and the opposite sign for the other half.

Appendix D. The power of the post-CCA GLM

Our post-CCA GLM has higher statistical power than a
standard GLM where the original predictors x1 and x2 enter sep-
arately. The linear combination of the predictors recovered by
CCA, Uj ¼ Pn

i¼1
aijxi, are orthogonal with each other (Anderson,

2003). (For simplicity, we used ai1=ai in the main text.) We focus
on U1 and U2, the combinations corresponding to the first two
CCA solutions (i.e., corresponding to the two highest correlations).
As depicted in Fig. A1, when we replace the original pair of
predictors x1 and x2 with U1 and U2, the projection of the signal of
interest y onto U1 has a higher magnitude (kCCA) than the any of the
two original projections (a11* or a21* onto x1 or x2, respectively). In the
best-case scenario (when θ=π /4), the coefficient kCCA is

ffiffiffi
2

p
times

higher.
Appendix E. Errors in variables

E.1. Problem

To improve the power of the statistical tests in the post-CCA
GLM, we use a method similar to instrumental variable estimation
(Spanos, 1986). Specifically, we search for a predictor that is the best
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choice to mitigate errors-in-variables in the predictor of the post-
CCA GLM. In the following, we show that U2, the signal com-
bination corresponding to the second CCA solution, is optimal.

The weights estimated through CCA are noisy values of the true
weights (Fig. A1). The activity of the downstream region, represented
by the vector y, is a linear combination of two, here orthogonal, pre-
dictors, represented by the vectors x1 and x2, i.e., y=a11* x1+a21* x2. For
simplicity, we normalize predictors to unit length and use polar coor-
dinates: a11* =cos(θ) and a21* =sin(θ). CCA only provides estimates of
the true coordinates a11* and a21* to yield the predictor U1=a11x1+
a21x2, which is only approximate.We continue to use polar coordinates
(a11=cos(θ+ε) and a21=sin(θ+ε)) andwe assume that the error from
the CCA is small (ε≈0).

We first derive an expression for the coefficient in the post-CCA
GLM when U2=a12x1+a22x2=a21x1–a11x2 is added as a predictor.
Let kCCA denote this coefficient (see also Fig. A1). Mathematically,
it is the first element of the following vector:

UVUð Þ�1 UVyð Þ ¼ a11a411 þ a21a421
a11a421 � a411a21

" #
;

where

U ¼ U1 j U2½ � ¼ a11x1 þ a21x2 j a21x1 � a11x2½ �
Switching to polar coordinates and applying a Taylor series

expansion, we obtain:

kCCA ¼ a11a411 þ a21a421 ¼ cos hþ eð Þ � cos hð Þ þ sin hþ eð Þ � sin hð Þ
¼ cos eð Þ ¼ 1� 1

2
e2 þ O e3

� 	
Now compare this expression to the one that obtains if any

other variable in x1 and x2 were to be used as additional predictor.
Without loss of generality, we could just choose to use x2, in which
case the design matrix becomes:

U ¼ U1 j x2½ � ¼ a11x1 þ a21x2 j x2½ �:

With analogous computations as before, the coefficient of the
GLM becomes:

kCCA ¼ a411
a11

¼ cos hð Þ
cos hþ eð Þ ¼ 1þ sin hð Þ

cos hð Þ eþ O e2
� 	

:

A comparison of the two expressions reveals that the addition
of U2 is better because the influence of the estimation error is of
higher order (2nd instead of 1st), and hence, smaller. Intuitively,
this result holds because, while U1 and U2 are uncorrelated, they
are both affected by the same noise.

Inspection of the expression for kCCA also reveals that the
choice of U2 as additional predictor avoids another problem.
Indeed, when hcp=2, the choice of x2 as additional predictor
makes the estimator kCCA numerically unstable.
Appendix F. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at 10.1016/j.neuroimage.2008.01.062.
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