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Abstract
Prediction of morphological forms is a well-studied problem
and can lead to better speech systems either directly by rescor-
ing models for correcting morphology, or indirectly by more
accurate dialog systems with improved natural language gen-
eration and understanding. This includes both lemmatization,
i.e. deriving the lemma or root word from a given surface
form as well as morphological inflection, i.e. deriving surface
forms from the lemma. We train and evaluate various language-
agnostic end-to-end neural sequence-to-sequence models for
these tasks and compare their effectiveness. We further augment
our models with pronunciation information which is typically
available in speech systems to further improve the accuracies
of the same tasks. We present the results across both morpho-
logically modest and rich languages to show robustness of our
approach.
Index Terms: speech recognition, morphology, pronunciations

1. Introduction
Text-to-speech and speech recognition systems convert a stream
of ‘words’ to an audio stream and vice versa. The term ‘word’ is
often loosely used to refer to a single token in normalized text,
but it is useful to distinguish between the notions of ‘lexeme’
and ‘word-form’. A lexeme (or lemma or root) is roughly a
concept which can be expressed using any of its inflected word-
forms (or surface forms), e.g. the English lexeme SING has
word-forms sing, sings, sang, sung and singing. We call these
morphologically related forms. The ability to determine a word-
form appropriate to the syntax of a sentence from a given lemma
is critical for natural language generation and the ability to de-
termine the lemma for a given surface form is essential for nat-
ural language understanding. Coupled with morphological tag-
ging, we can use morphological inflectors and lemmatizers to
improve the quality of natural language conversational agents.
More directly, inflection is useful for text-normalization (the
transformation of words from the written to the spoken form) in
text-to-speech and can improve recognition quality by morphol-
ogy based rescoring in speech recognition for morphologically
rich languages [1]. As the example above shows, inflection can
happen via different mechanisms like morpheme affixation (‘-s’
in sings, ‘-ing’ in singing) or systematic vowel changes (ablaut
phenomenon in sang/sung), and across languages several dis-
tinct mechanisms are known like reduplication, infixation, dele-
tion, etc. (see Table 1)

Traditionally in computational morphology, to compute the
different morphological surface forms of a lemma, language-
specific hand-crafted rules and paradigms were listed and en-
coded as finite state transducers [2] [3] [4]. These rules are
however difficult to automatically infer from a lexicon since,
for example, conflict resolution when one rule acts as exception
to another results in large complicated transducers. To scale the
process, a number of approaches have been proposed to build

Reduplication in Pingelapese
MEJR to sleep
mejr sleep
mejmejr sleeping
mejmejmejr still sleeping

Infixes and circumfixes in Tagalog
KAIN to eat
kumain eat! (imperative)
kinain ate (past)

KAIN to eat
pakainin to let eat
pagkainan eat in/at

Subtractive morphology in Mikasuki
HOFAALI to take/pull out
hofaali to take out (sg obj)
hofli to take out (pl obj)

Table 1: Reduplication, infixation and deletion for morphology.

models to infer the rules directly from lexical data [5] [6] [7].
Sequence to sequence deep learning approaches are promising
as they avoid language-specific feature engineering, are easier
to apply to new languages and yet attain state-of-the-art results
[8] [9].

In this work we present a detailed evaluative study of differ-
ent language-independent neural paradigms applied to the task
of morphological inflection as well as lemmatization, where we
frame both problems as sequence to sequence string transduc-
tions with the morphology class as an additional input. In ad-
dition to unifying the two symmetric problems by approaches
that are effective for both, our approaches involve generic so-
lutions for injecting a non-sequential feature (the morphology
class) into the various well-known sequence transduction neu-
ral paradigms.

We further extend the work to improve the models by
adding pronunciation data (word to phoneme mappings) for
both tasks, which is typically readily available in speech sys-
tems. The linguistic reason why this helps is because often
morphological changes are a function of phonemic information
which may not be transparent in orthography. This requires ex-
tending the above approaches to inject non-sequential data to
approaches that can inject sequential auxiliary data. The ap-
proaches are fully general and can be applied in a wide vari-
ety of settings to add features to sequence-to-sequence neural
paradigms.

Morphology is also used to refer to the process of word for-
mation by derivation or compounding. In this work we focus
our attention on inflectional morphology although it would be
interesting to study derivation and compounding by appropri-
ately adapting the techniques discussed here. Improving com-
pounding can lead to improvements in speech recognition sys-
tems of languages with productive compounding like German
[10].
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Input <B> S I N G <E> φ φ φ φ φ φ φ φ φ φ φ φ
Output φ φ φ φ φ <B> s a n g <E> φ φ φ φ φ φ φ

Table 2: Sample input output alignment for character LSTM model.

2. Related Work
2.1. Morphology and speech

Morphology prediction is a problem of independent interest and
has applications in natural language generation as well as nat-
ural language understanding. The problems of lemmatization
and morphological inflection have been studied in both contex-
tual (in a sentence, which involves morphosyntactics) and iso-
lated settings [8] [11] [12].

Speech recognition and synthesis systems can be viewed as
sequence-to-sequence transduction problems and various end-
to-end models have gathered recent interest [13] [14]. End-
to-end systems are an attractive option for small sized models
which can potentially take the complete context of the problem
into consideration, but most state-of-the-art conversational sys-
tems are a composition of several sub-systems, often each being
a sequence-to-sequence problem. Morphology prediction finds
applications in several positions in this stack of sub-systems,
and can also be used as a reranking tool to improve accuracy
in end-to-end recognition systems [1] and prosody in synthesis
systems [15].

2.2. Neural networks for sequence learning

Recurrent Neural Networks (RNNs) are able to learn how to
map a given input sequence to an output sequence of the same
length and can ‘remember’ previous inputs/outputs by reusing
their outputs as an additional input. However vanilla RNNs
tend to quickly forget their past inputs due to a problem known
as vanishing gradients. A popular resolution is to use LSTMs
to allow remembering relevant information for arbitrary time
lengths [16]. Further bi-directional LSTMs allow initial output
to depend on input symbols that appear later in the sequence.

RNNTs (Recurrent neural network transducer) constitute
an effective sequence-to-sequence learning paradigm in the
encoder-decoder paradigm [17] which allows transduction of
variable length sequences. The transducers also allow for an ex-
plicit mapping between input and output symbol subsequences.
The dependence on far-away elements is possible due to the
RNN units.

Recently attention-based sequence to sequence models
have become popular [18] [19] [20] [21] as they allow a more
efficient way of focussing on just the relevant sections of the
input to produce the corresponding output segment.

Given the variety of sequence learning neural architectures
available, studies comparing their effectiveness for specific ap-
plication paradigms are useful [22] [23].

3. Sequence-to-Sequence Models
For concreteness, we focus on the joint supervised setting i.e.
we use annotated data to learn a single model for predicting in-
flections/lemmata for all morphological classes. The joint set-
ting is the most relevant for scaling to low-resource languages
as it allows sharing of learnt information across inflectional
paradigms, and typically the most effective models in state-of-
the-art approaches are built in this setting.

We train and evaluate our models for three languages: En-

glish (United States), German (Germany) and Russian (Rus-
sia). For training our models, we use pronunciation lexicons
(word-pronunciation pairs) and morphological lexicons (word-
lemma-morphology feature vectors) of size≈ 105-106 for each
language. For the languages discussed, such lexicons can be ob-
tained for example by scraping Wiktionary data. While this is
typical high-resource language domain, in section 6 we discuss
applications and extension of our work to low-resource settings.
We keep 20% of the lexicons aside for evaluation using word
error rate metric.

Morphological classes are often described as a complex hi-
erarchy, e.g. tense-mood-aspect are features typically appli-
cable only for the verb part-of-speech, but the surface form
may also be influenced by number and person. For simplic-
ity, we treat all features independently, with an additional value
‘〈N/A〉’ (not applicable) if a particular feature does not apply
to a word. Thus morphology class is encoded as a fixed length
vector for each word, for example

P.O.S. degree number tense . . .
M(happier) = 〈adj.〉 〈comp.〉 〈N/A〉 〈N/A〉 . . .

Morphology class is thus an integer sequence if each fea-
ture value is mapped to a distinct integer in the range
[1,#(legal values for feature)+1]. Note that the same spelling
can appear multiple times in the morphology lexicon corre-
sponding to different words with potentially different pronunci-
ations. In all our models we allow for missing/incomplete data
by using a special ‘〈UNKNOWN〉’ symbol which the models
learn to ignore.

In the following subsections we describe common algo-
rithms for lemmatization and inflection (i.e. training with in-
put and output switched) and compare baseline accuracies for
sequence-to-sequence transduction with those of models aug-
mented with morphology class information.

3.1. Character LSTM (long short-term memory) Models

The input and output orthographic sequences (encoded as one-
hot vectors) are padded to be of the same length (we use an
upper bound on the total input+output length for the language),
and the output is translated to coincide with the end of input.
For example for the ‘SING, sang’ pair, the input and output
encoding is shown in Table 2. This allows the model to see the
entire input sequence first and then start predicting the output
sequence.

Input and output tapes are switched for the lemmatization
problem. To augment with morphology class in this model, we
simply extend the input tape with a section encoding the mor-
phology feature vector for the surface form. For lemmatization
we build two models, a baseline without injecting morphology
class (which corresponds to lemmatization in absence of mor-
phological tagging, ‘LSTM-base’ in Table 3) and one with the
morphology class added to input (‘LSTM’ in Table 3).

The accuracy of prediction for the inflection task is noted in
Table 4.
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Model English German Russian
LSTM-base 85.5% 69.0% 82.0%
LSTM 94.4% 85.9% 89.1%
RNNT-base 95.5% 73.2% 88.8%
RNNT 97.8% 91.9% 93.1%
Attention-base 94.6% 81.1% 89.0%
Attention 97.5% 93.2% 94.5%

Table 3: Lemmatization accuracy using various sequence-to-
sequence neural models. ’base’ here refers to lemmatization
without knowledge of morphology class

Model English German Russian
LSTM 96.1% 93.7% 63.6%
RNNT 98.1% 95.7% 75.2%
Attention 98.7% 95.9% 79.4%

Table 4: Inflection accuracy using various sequence-to-
sequence neural models.

3.2. RNN Transducers

Recurrent neural network transducers have a jointly trained
encoder-decoder architecture. We use bidirectional RNN lay-
ers with dropout to avoid overfitting. The morphology feature
is tiled along the input to ensure it is considered throughout the
transduction (i.e. appended to each input/output symbol instead
of just at the end). We also tried injecting the morphology fea-
ture in the decoding/joint layers but there was negligible change
relative to embedding in just the encoding layer.

The accuracy of prediction for the lemmatization and in-
flection tasks are noted in Table 3 and Table 4 respectively.

3.3. Attention-based Models

We also study effectiveness of dot-product (soft) attention mod-
els for lemmatization and inflection. Here, instead of the joint
network trained in RNNTs, an attention network is trained to
learn a weighted linear combination of the entire input at each
time step to learn which segment(s) of the input to focus on for
a particular output segment. We simply concatenate the mor-
phology feature vector to the input and let the attention mecha-
nism learn the appropriate segments of input for performing the
morphological transformations. We essentially use the same in-
put/output encoding scheme as before except that we dont need
padding.

The accuracy of prediction for the lemmatization and in-
flection tasks are noted in Table 3 and Table 4 respectively.
Attention-based models seem to perform the best accross lan-
guages for either task.

4. Augmenting with pronunciation data
Pronunciation data is available as pronunciation lexicons. For
the morphological inflection and lemmatization tasks we can
lookup the pronunciation (i.e. a phoneme sequence with stress
symbols and syllable boundaries marked) from the lexicon dur-
ing inference. So it makes sense to augment the input se-
quence (lemma or surface form depending on the task) with its
pronunciation during training and see if we get any improve-
ments. This is expected to help in case of homographs (words

Model English German Russian
LSTM 95.4% 87.1% 89.5%
RNNT 97.9% 92.2% 93.1%
Attention 98.0% 93.9% 94.7%

Table 5: Lemmatization accuracy using various sequence-to-
sequence neural models with input augmented with pronuncia-
tion.

Model English German Russian
LSTM 97.1% 94.9% 65.5%
RNNT 98.5% 95.7% 75.5%
Attention 98.8% 96.3% 81.2%

Table 6: Inflection accuracy using various sequence-to-
sequence neural models, with input augmented with pronuncia-
tion.

with same spelling but different pronunciations e.g. ‘resent’ -
if the pronunciation is /ôI"zEnt/ it corresponds to the lemma
‘RESENT’, but /ôi:"sEnt/ is the past form of ‘RESEND’) but
also more generally because morphological changes are often
a function of phonology. For instance, ‘thief’ and ‘life’ in En-
glish undergo a similar transformation to give plurals ‘thieves’
and ‘lives’. Although the surface forms end differently, the pro-
nunciations end in the same phoneme /f/ which dictates the pe-
culiar pluralization. Thus we hope to resolve these kinds of
errors which the models described in the previous section are
likely to make, by developing pronunciation informed models.

Pronunciation however, unlike morphology class, is se-
quential data. Hence, to use it effectively, the model must
also learn to align the pronunciation to the input word/lexeme.
Depending on the neural architecture we can have different
ways to inject the pronunciation into the sequence-to-sequence
paradigm.

IMi

bi-LSTM
3× 128

Oi

Ii

bi-LSTM
2× 128

Oi

forward
LSTM 128

backward
LSTM 128

IPi

Figure 1: LSTM architectures for injecting pronunciation
for morphology prediction. IM is input word/lexeme se-
quence I augmented by morphology class M , O is the output
word/lexeme and IP is the input pronunciation.

4.1. Character LSTM Models

Lemma pronuciation can be added to LSTM models by adding
a symmetric additional input (paddings adjusted to make all
words and pronunciations fit). See Figure 1 to compare the
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archictecture here with that in section 3.1.

4.2. RNN Transducers

For RNNTs, we can first align the input word/lexeme with its
pronunciation, and finally align the output with the aligned gra-
phone sequence. The first alignment results in a transducer,
transduction steps of which (correspond to advancing along the
input) are mapped to output sequence. So during inference we
simply apply the transduction and pick the most likely output
with beam search.

4.3. Attention-based Models

In attention-based models we can simply concatenate the two
pronunciations in the input (punctuated by a suitable boundary
symbol) since the model can simultaneously look at distant por-
tions of the input sequence efficiently. Another alternative is
2-D attention as described in [24].

The accuracies for these various approaches described
above are noted in Table 4 and 5 for the lemmatization and in-
flection task respectively. Again we note attention-based mod-
els perform well accross tasks and languages.

Note that lemmatization is unique for a word form and
is easier to do without morphology information of the source
form. Thus lemmatization baselines are typically high even
without the morphology class information and augmenting with
additional data does not improve it as well as the inflection task.

5. Conclusion
We note that common sequence-to-sequence neural models can
be readily extended by injecting morphology and produce state-
of-the-art accuracies on lemmatization and inflection tasks, and
are significantly better than vanilla LSTMs which don’t cap-
ture the transduction or injection as effectively. Addition of
non-sequential and sequential auxiliary data to well-known
sequence-to-sequence neural architectures is explored and we
have successfully demonstrated how these can be useful in im-
proving system accuracy on lemmatization and inflection tasks,
by augmenting the input to the models with morphology class
and pronunciation data.

6. Discussion and future work
One way to extend the work here is to exploit the hierarchical
nature of morphology classes, possibly by encoding using more
powerful models like structured attention [25] [21]. Partial anal-
ysis of morphology can be used - often full analysis is either not
available or in fact not unambiguous given the context.

Also it would be interesting to extend the work to derivation
and compounding. Extension to derivation is rather simple, but
compounding (analysing compounds just given their spelling
and morphology class) is hard and would likely need memory
augmented models [26]. Another venue to explore is extension
to contextual settings, one could simultaneously compute mor-
phosyntactic tagging and desired morphological form or in cer-
tain applications skip morphosyntactic tagging altogether [27].
Linguistically rich morphology allows the language to have a
looser syntax and word ordering requirements, so it would be
interesting to see a unified mechanism to generate or analyse
both simultaneously [28].

The approaches described in this work are fully supervised.
It would be interesting to see more cross-lingual and semi-

supervised solutions to these problems to extend them better
to the low-resource languages. On the other hand, models like
these can help development of lexical resources more readily in
low resource settings - one could largely automate generation
of morphological forms and speed up lexical development by
requiring only annotations of root forms [29].

7. Acknowledgments
We thank our colleagues Markus Becker, Ivan Korotkov, Leif
Johnson and Neha Chaudhari for helpful discussions. The work
was done while the authors were at Google.

8. References
[1] I. Shafran and K. Hall, “Corrective models for speech recognition

of inflected languages,” in Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, 2006, pp. 390–398.

[2] K. Koskenniemi, “Two-level model for morphological analysis.”
in IJCAI, vol. 83, 1983, pp. 683–685.

[3] R. W. Sproat et al., Morphology and computation. MIT press,
1992.

[4] R. M. Kaplan and M. Kay, “Regular models of phonological rule
systems,” Computational linguistics, vol. 20, no. 3, pp. 331–378,
1994.

[5] G. Chrupała, “Simple data-driven context-sensitive lemmatiza-
tion,” Procesamiento del lenguaje natural, nº 37 (sept. 2006), pp.
121-127, 2006.

[6] R. Roth, O. Rambow, N. Habash, M. Diab, and C. Rudin, “Ara-
bic morphological tagging, diacritization, and lemmatization us-
ing lexeme models and feature ranking,” Proceedings of ACL-08:
HLT, Short Papers, pp. 117–120, 2008.

[7] G. Nicolai, C. Cherry, and G. Kondrak, “Inflection generation as
discriminative string transduction,” in Proceedings of the 2015
conference of the North American chapter of the association for
computational linguistics: human language technologies, 2015,
pp. 922–931.

[8] M. Faruqui, Y. Tsvetkov, G. Neubig, and C. Dyer, “Morphological
inflection generation using character sequence to sequence learn-
ing,” arXiv preprint arXiv:1512.06110, 2015.

[9] R. Aharoni and Y. Goldberg, “Morphological inflection
generation with hard monotonic attention,” arXiv preprint
arXiv:1611.01487, 2016.
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