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ABSTRACT

Incremental speech recognizers start displaying results while the
users are still speaking. These partial results are beneficial to users
who like the responsiveness of the system. However, as new partial
results come in, words that were previously displayed can change
or disappear. The results appear unstable and this unwanted phe-
nomenon is called flickering. Typical remediation approaches can
increase latency and reduce the quality of the partials results, but
little work has been done to measure these effects. We first introduce
two new metrics that allow us to measure the quality and latency of
the partials. We propose the new, lightweight approach of reranking
the partial results in favor of a more stable prefix without changing
the beam search. This allows us to reduce flickering without impact-
ing the final result. We show that we can roughly halve the amount
of flickering with negligible impact on the quality and latency of the
partial results.

Index Terms— Flickering, partial quality metric, partial latency
metric, beam search

1. INTRODUCTION

With incremental recognition, automatic speech recognition (ASR)
systems display results before the user is done speaking. Periodi-
cally, the systems shows results that are the transcription of what has
been said so far. These results are called partial results (or partials
for short) as opposed to the final result which corresponds to the
transcription of the entire utterance, once the user is done speaking.

Displaying partial results has been a feature of many automatic
speech recognizers for several decades [1, 2, 3]. Users like seeing
results, one of the reasons being that they are an indication that the
system is responsive [4, 5]. It is a feature of keyboard dictation sys-
tems [6]. In some applications, such as live captioning of video [7],
having streaming partial results is even a required feature.

Further, partial results can be used by downstream systems in
order to reduce their own latency. For example, by using partial
results, machine translation systems [8, 9] can start their processing
even before the speech recognition is complete. Some ASR systems
for translation are even designed with low-latency in mind [10].

However, having partial results introduces the complication of
unstable results. As the users continue speaking, the recognizers
do not necessarily append new words to the previous partial result.
Rather, words that were previously displayed can be removed or
changed. The recognizers can also insert new words in the previ-
ous partial. When the words of the partial results are unstable, they
change rapidly on the screen: they flicker. As an example, we up-
loaded two videos as supplementary material [11].

Flickering creates a poor user experience [4, 12]. The rapid
change in results is distracting [13, 14]. As users speak, their atten-

tion is drawn back to previous words, thus increasing their cognitive
load and frustration with the system. Having non-flickering results
is recommended for accessibility [15].

Further, flickering can negate latency gains [8, 9]. Because the
previously decoded words are no longer present, the previous com-
putation of downstream systems is no longer relevant. The down-
stream system needs to reprocess the new partial, thus increasing
latency.

Thus, flickering is an important aspect of the quality of a stream-
ing speech recognizer. Even though most speech recognition sys-
tems are evaluated only on the quality and latency of their final re-
sults, partial results also play an important and under investigated
role in evaluating a recognizer. We should both improve the ability
to evaluate partial results’ quality, latency, and stability, and devise
methods to improve these metrics.

Partial results are usually generated mid-decoding by using the
hypotheses of the beam search [16]. As new audio frames come in,
the beam search extends its top hypotheses. Periodically, recogniz-
ers can use the current top hypothesis of the beam to create a partial
result. Then, at the end of the audio, they use the top hypothesis on
the beam in its final state to generate a final result. This approach
is common among both in conventional [17, 18] and end-to-end sys-
tems [19, 20, 21].

At its root, flickering is a by-product of repeatedly picking the
top hypothesis before the beam search is complete. Contrary to gen-
erating a final result, which happens once, the decision of picking
a partial hypothesis has to be made multiple times. But as the de-
coding progresses, there is no guarantee that the previously picked
hypothesis is a prefix of the currently picked hypothesis. This means
that the previous partial result is not necessarily a prefix of the cur-
rent partial result.

This is illustrated in figure 1, where we show two consecutive
beam search steps. On the first step, we have three hypotheses and
the one with the lowest cost is just, stand. Then, more audio
comes in and at the next decoding step, the hypothesis with the low-
est cost is just, send, text, resulting in flickering because the
token stand disappears and is replaced with send.

While modifying the beam search algorithm is at first a reason-
able approach, it has numerous side effects. Since the final results
are generated from the top hypothesis at the end of the beam search
decoding, if we modify the beam search algorithm, we would poten-
tially modify the final result.

For example, we could replace the beam search with a greedy
search (which is equivalent to having a beam size of 1). This would
effectively completely suppress the flickering, but would severely
degrade the quality of both the partial and final results. Another ex-
ample would be to only generate partial results from the common
path of the beam search among all the hypotheses. We would only
display the common path among all the hypotheses on the beam.
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Fig. 1: Example of two steps of the beam search. The numbers at
the leave nodes are the cost of the entire path from to root to the leaf.

This would also suppress flickering, but would introduce unaccept-
able delays in the generation of partials.

The two examples above, while extreme, do illustrate the con-
straints at play. We have to balance three objectives: we want partial
of high quality, low flickering, and low latency. Further, when we
address these objectives for the partial results, we would also pre-
fer not degrading the final result’s quality and latency. Previously
proposed flickering reduction algorithm [22, 23] also did consider
latency and quality.

Thus, even before we attempt to improve the stability of par-
tial results, we need to be able to measure the effect of our design
choices on flickering, quality, and latency. While there is prior work
on measuring the amount of flickering itself [22] to the best of our
knowledge, there is no satisfactory metric for partial quality nor par-
tial latency. Previous work [22, 23] did not measure the latency of
all the partials, but rather the first partial. They also tried to improve
the partials by increasing the period at which they were generated.

The paper is interested in both defining new metrics and once the
metrics are defined, improving flickering without degrading quality
nor latency.

The rest of our paper is organized as follows. In section 2, we
describe the three metrics to evaluate partials. In section 3 we pro-
pose one algorithm that reduces flickering. This algorithm does not
modify the beam search in any way, but rather modifies how to pick
results from the output of an existing beam search algorithm. In sec-
tion 4 we experimentally analyze our algorithms. Finally, we con-
clude in section 5.

2. METRICS

As described in section 1, we need three metrics: flickering, quality,
and latency. For the flickering metric, we simply re-use the same
method as [22] unmodified. However, to our knowledge, there is
no satisfactory metric for either partial quality nor partial latency.
Below in sections 2.2 and 2.3 we describe how these could be mea-
sured. All our metrics are performed on the decoded transcripts1.
The quality and latency metrics of [22] were only considering the
last partial, which we believe is not sufficient.

2.1. Flickering metrics

We briefly summarize the metrics of [22]. The gist of their approach
is to count the numbers of words that flickered. They then tally
the results and get the unstable partial word ratio (UPWR) and the
unstable partial segment ratio (UPSR). Roughly speaking, UPWR
measures the fraction of words that flicker and UPSR measures the
fraction of segments that flicker. For both, the lower the value, the

1Even though our system [21] uses word pieces, the metrics are com-
puted after the word pieces are reassembled into a string of characters form-
ing words.

t0

t1 Send

t2 Send a

t3 Send meh text

t4

t5 I

t6 I be late a

Audio and segment start

Segment end

Segment start

Audio and segment end
Fig. 2: Example of a machine decoded transcript. The result
has two segments, [t0, t3] and [t4, t6], and has five partial re-
sults, “Send”, “Send a”, “Send meh text”, “I”, and “I be
late a”. The partials are reset between the two segments, so that
we stop appending new tokens and instead restart from an empty
transcript.

better. We refer the reader to section 2 of [22] for the exact descrip-
tion of the metrics.

2.2. Partial word error rate (PWER) metric

We need to have an aggregate metric that evaluates the quality of
all the partials, not just the last emitted result. Further, this task
is complicated by the fact that the decoding of the audio occurs in
segments, as illustrated in figure 2. Our proposed evaluation method
is in two main steps: segment attribution and segment scoring. At
the end, we compute a partial word error rate (PWER) metric.

2.2.1. Segment attribution

Algorithm 1 Algorithm that performs the segment attribution (we
left out the creation of concatenation of the last partial of each seg-
ments, for brevity).

align codes← Lev(ref, concat last partials)
i← 0
j ← 0
for align code in align code do

if align code == SUB or COR then
ref[j].segment← concat last partials[i].segment
i← i + 1
j ← j + 1

end if
if align code == INS then

i← i + 1
end if
if align code == DEL then

icapped ← min(i, (concat last partials)− 1)
ref[j].segment← concat last partials[icapped].segment
j ← j + 1

end if
end for

Speech recognizers often split utterances into chunks called seg-
ments, which are delimited by silence [24]. Each segment gets its
own independent beam search. Our reference transcript, however, is
not on a per-segment basis, but for the entire utterance. It would not
be possible to have humans annotate on a per-segment basis because
the segmentation is performed by a model [24] and therefore it could
change from experiment to experiment.

Considering the example of figure 2, we only have the reference
transcript Send a text I will be late. We don’t know a
priori what part of the reference should be used to score each of the
two segments. For example, one recognizer may decide that there is
silence between the two sections and have the two segments: Send



−→ j −→
Send a text I will be late

Send meh text I be late a
−→ i −→

COR SUB COR COR DEL COR COR INS

attributed to 1st segment attributed to 2nd segment
Fig. 3: Result using the algorithm 1 of decoded results of figure 2
using a reference transcript Send a text I will be late.
The algorithms determines that the first segment corresponds to the
reference Send a text and the second segment to I will be
late.

meh text and I be late a, but it is not immediately obvious
that the first segment corresponds to the part of the reference that is
Send a text and the second one to I will be late. An-
other recognizer might decide that there is only a single segment.
Consequently, human annotation of segmentation would not be use-
ful because segmentation itself is a result of modelling choices. In-
stead, the metric itself needs to decide which words of the reference
transcript belong to which segment; it needs to do segment attribu-
tion.

The proposed algorithm for segment attribution has two steps.
First, we use the last partials of each segment, concatenate them, and
compute a Levenshtein [25] edit distance. Then, using the alignment
results, we can attribute each entry of the reference to a segment. In
short, we transfer the segment information from the partials onto the
reference, thus assigning a segment information to each reference
token.

The algorithm 1 inset presents the details and is illustrated by
an example in figure 3 where the variable i indexes the partials on
the top row, and the variable j indexes the reference on the bottom
row. It essentially walks along the alignment backtrace [25], taking
note of which segment the partial token is from, and assigning this
segment to the reference token. The only special case is for deletion,
where there is no corresponding partial token. When this occurs
within a segment, we just keep use this segment. But when the dele-
tion occurs between two segments, we can assign either the previous
segment or the next one. We arbitrarily chose to assign the next one.
However, for n segments, there are n+ 1 gaps (including before the
first segment and after the last segment). We need to special-case
when the last token of the reference is deleted, in which case, we
assign the previous segment.

We illustrated the output of the algorithm of inset 1 on the ex-
ample of figure 2 in figure 3. The top row is the concatenation of the
last decoded partials with the color indicating which segment it came
from. The bottom row is the reference transcript. The middle row
shows the results of the Levenshtein decisions are indicated by COR,
SUB, DEL, and INS for correct, substitution, deletion, and insertion.
Thus, the reference tokens Send, a, and text get attributed to the
first segment and I, will, be, and late to the second one.

2.2.2. Computing a partial errors for each segment

Once segment attribution is performed, we have a reference tran-
script for a segment. Continuing with the example result of figure 2
and the reference attribution of figure 3, we have partials “Send”,
“Send a”, and “Send meh text” which need to be scored
against the reference “Send a text”. Intuitively, the first partial
“Send” scored with reference “Send a text” should have no
error, but if we were to compute the number of errors using the

traditional metric, there would be two deletions.
One possible modification, is to compute the edit distance of the

partial against all prefixes of the reference and return the minimum.
Mathematically, if Lev is the traditional Levenshtein distance, we
would replace:

Lev(seg ref, partial) (1)

with

min
m

(Lev(seg ref[0 : m], partial)) (2)

The naive implementation would be computationally expensive.
The Levenshtein algorithm is quadratic, and the additional looping
would make it cubic. However, the algorithm can be modified to
return the same result, but keeping it quadratic.

The traditional Levenshtein edit distance is computed using dy-
namic programming. If we have two strings a and b of lengths m
and n, respectively, the algorithm computes an array C of dimen-
sions (m+ 1, n+ 1) where each cell C(i, j) contains the value:

C(i, j) = Lev ( a[0..i], b[0..j] ) (3)

The edit distance is then read out from the bottom right cell in
the array: C(m,n) and the rest of the array is discarded.

In our case, we need not restrict ourselves to reading from the
bottom right cell in the array. We still compute the Levenshtein dis-
tance of the partial against the full segment reference. Then, instead,
of reading only from C(m,n), we compute:

min
i∈[0,m]

C(i, n) (4)

which will, by definition, readily give the same result as in equa-
tion (2). The length of the reference is:

arg min
i∈[0,m]

C(i, n) (5)

For the last partial of the segment, we do not compute the min-
imum, and instead revert to the traditional Levenshtein metric be-
cause we should match all the words in the reference. Thus, using
the new approach, we no longer need a cubic algorithm and instead
we keep the algorithm quadratic and simply add a linear step at the
end.

2.2.3. Aggregate across all segments and all utterances

In section 2.2.1 we described a way to split the reference into seg-
ments and in section 2.2.2 we described a way to score individual
partials. We need now to aggregate scores for each partials into a
single score.

Several choices are possible, and the decisions can be subjective.
A word that appears early in the segment might be wrong for the
entire duration of the segment, or might be fixed half way through. A
word that is at the end of the segment will spend less time displayed
on the screen, and it might be less severe of a mistake than a early
word being wrong. We would have to decide on how to weigh these
possible preferences.

For simplicity, we compute the sum of the number of errors for
each the partials without any weighting. Then, the length of ref-
erence is the sum of equation (5) for each partial. Thus, for each
utterance, we have two values: a number of errors and a length. We
then aggregate over utterances as for the traditional WER. A notable
difference of the partial WER metric is that they are not compara-



ble with the final WER, but the partial WER metric is still internally
comparable across different ASR systems.

2.3. Partial Latency (PL) metric

The other metric to measure is the partial latency (PL) of the emit-
ted partials. We had to make design decision about alignment of
references.

First, our metric does not require force alignment. While us-
ing an external model that has good timing information would have
allowed us to force-align and get timing information, this step is ex-
pensive and require an external model to align [26, 27].

Second, our metric does not use the timing of the final result
to self-align. This allows us to compare an existing data set across
models, as the values are consistent.

Instead, we measure all latencies from the start of the audio.
Thus, we cannot compare across data sets, but we can compare
across models and de-flickering algorithms within the same test set.

2.3.1. Reference token emission time determination

The proposed latency metric relies extensively on previous algo-
rithms from section 2.2. We first reuse the segment attributions com-
puted in section 2.2.1 without any change. We thus have a reference
transcript for each segment.

For each segment, we want to compute when a reference word
first appears in a partial. Intuitively, the users would consider that a
word they spoke has been decoded when it first appears. If it doesn’t
appear (because recognition is imperfect), then the users would con-
sider the word has been mis-transcribed when the subsequent word
has been decoded. We use an algorithm similar to the one in inset 1
as shown in inset 2. It loops over all the partials and does the same
modified Levenshtein distance as in 2.2.2. Then, using the align-
ment codes, it advances very similarly as the previous algorithms,
and when it finds a correct token, it records the partial from which it
came from.

Algorithm 2 Algorithms that estimates the first appearance of
a word in a reference token. For brevity, we assume that the
ref[j].time are initialized to +∞ for all j. Note that the al-
gorithm is very close to the trace back step of the edit distance algo-
rithm.

for partial in segment partials do
align codes← VarLenLev(ref, partial)
i← 0
j ← 0
for align code in align codes do

if align code == SUB then
i← i + 1
j ← j + 1

end if
if align code == COR then

ref[j].time← min (partial.time, ref[j].time)
i← i + 1
j ← j + 1

end if
if align code == INS then

i← i + 1
end if
if align code == DEL then

j ← j + 1
end if

end for
end for

While the two algorithms are similar, they have some notable
differences. One is that in algorithm 1 we use the traditional Lev-

enshtein distance once per utterance, whereas in algorithm 2 we use
the modified Levenshtein distance once per partial. Another is that
in the second algorithm, we treat substitutions and correct tokens
differently. We only assign a time when the token is correct.

Our algorithm is not guaranteed to assign a time to each ref-
erence token. If none of the partials contain the reference token,
then the algorithm will not assign a time to this token. We fix this
issue with a follow-up pass on the reference tokens. For each of
the reference tokens with the time missing, we assign the time of
the next reference token. We do so recursively until we find a ref-
erence token with a time or, ultimately, the time of the end of the
segment. This can be performed in linear time by a traversing the
tokens from the last to first, thus allowing us to compute T̂i =
Tfirst appearance(ref wordi) for all words in the reference tran-
script.

2.3.2. Aggregation across all segments and all utterances

From the previous section, we obtained time stamps for each refer-
ence token. We need to aggregate them into a single metric. We
simply first average within an utterance, and then average over all
the utterances.

As mentioned at the beginning of section 2.3, the metric returned
does not use reference times, either from a force-alignment, or from
the final results. The metric is the reference emission time delayed
from the start of the utterance, and thus test sets with longer utter-
ances on average will have larger numbers. We had made this de-
cision for ease of use, and ability to compare algorithms within a
data set. Thus, this partial latency metric cannot be used for a single
system alone, but can only be used in relative change between two
systems as the user perceived emission delay change. Our metric is:

PL =
1

N

N∑
i

T̂i (6)

And when comparing models:

∆ = PL(test)− PL(base) (7)

Note that if we had force-alignment information, we would have
the true time for each reference word, Ti, and thus be able to subtract
it from the algorithm’s time, but the value of ∆ would be unchanged:

1

N

(
N∑
i

T̂i(test)− Ti

)
− 1

N

(
N∑
i

T̂i(base)− Ti

)
= ∆

(8)

3. FLICKERING REDUCTION ALGORITHM

When designing a new algorithm, we had several requirements.
Foremost, we did not want to change the final results. While chang-
ing the beam search can sometimes improve latency [28], it creates
complications because it ties partial flickering and the final results.
We also assumed that the existing system had been very well tuned
and that it would be difficult to improve its beam search. We wanted
that no matter how the partial results were modified, the final results
and their WER should be unchanged. We would also prefer that
any flickering improvement we propose be orthogonal to any beam
search improvements, such as [29]. Thus, instead of modifying the
beam search algorithm, we left it completely unchanged. We did not
modify how the hypotheses on the beam are generated as the audio
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Fig. 4: Rescoring lattice to favor the prefix “ just, stand”.
There are two sigma loops (that match any token) on states 0 and
2. Since the state 0 had exit weight α it penalizes hypotheses that do
not match the prefix.

comes in. Instead, we simply changed how we selected a hypothesis
from the beam to generate a partial from. At each partial generation
step, we no longer always pick the current best hypothesis on the
beam, instead, we might pick a different hypothesis from the beam,
one that balances flickering, quality, and latency. Once we have
generated a partial, the beam search proceeds unmodified. Second,
we did not want to incur much of a computational cost. For example,
adding an additional neural network to decide which hypothesis to
use to generate a partial could be computationally expensive.

Every time we want to generate a partial, the proposed algorithm
reranks the hypotheses on the beam based on whether they share a
prefix with the partial that had been generated previously2. If a given
hypothesis does share a prefix, its cost is left unchanged. If a given
hypothesis does not share a prefix, its cost is increased by a penalty.
We then pick the hypothesis with the lowest new cost to create the
new partial. Mathematically, at every partial generation step, the
previous algorithm was picking:

arg min
i

(cost (hyp[i])) (9)

Instead, we first defined a new penalty function:

P (i) ,

{
0.0 if previous partial is a prefix of hyp[i]

1.0 otherwise
(10)

And then, using this new penalty function, every time we gener-
ate a partial, the proposed algorithm instead picks:

arg min
i

(cost (hyp[i]) + α · P (i)) (11)

Where α is an hyperparameter of the model. If α = 0, then
we revert to the previous algorithm. If α → ∞ then we have maxi-
mum de-flickering. Note that even with a very large value, flickering
may still occur. If at a certain decoding step, the previous partial is
a prefix of none of the hypotheses on the beam, then all the possi-
ble hypotheses will flicker and thus we will have P (i) = 1.0 for
all hypotheses, thus leaving the ranking unchanged. We chose this
approach to eliminate the possibility of having the model be stuck.

Note that the penalty imposed in equation (11) is only for the
generation of partials. The beam expansion uses the original costs
and it never uses the penalty function from equation (10). Because
the beam search algorithm is left unchanged, the final result is not
changed either. This allows us to reduce flickering without impact-
ing the final results.

Intuitively, we think the algorithm makes sense because it allows
us to control the flickering and quality. If two hypotheses are very
close in cost, then we aren’t confident that the top one will have the
best partial in term of quality, so we might as well as pick the hy-

2The algorithm operates on word-pieces, contrary to the metric that uses
the decoded transcript as a string of characters.

pothesis that does not flicker. If two hypotheses are far in cost, then
it could make sense to accept some flickering because we are likely
to have a better quality. Another way to think about the proposed
algorithm is that we introduced some hysteresis in the update of the
prefix in the partials. How partials are generated at a decoding step
is no longer only a function of state of the beam. Instead, it is also
a function of the previously generated partial, with a preference for
not changing already decoded words.

In terms of latency, we expected our algorithm to have a small
effect. The amount of computation required is quite small. We only
perform prefix comparisons on the order of 10 hypotheses and only
when we decide to output a partial. It could, however, increased the
perceived latency nonetheless. By degrading the quality of the par-
tials, our latency metric (section 2.3) might increase because words
that are not found will have their timestamp attributed to the follow-
ing word.

Other possibilities for the cost function of equation (10) are pos-
sible. Instead of a binary penalty, we could have used a distance
function between the previous partial and the current hypothesis.
The proposed function is however extremely cheap to compute and
as we will see in section 4, it already performs well.

Going back to the example of figure 1, we see in the second step
that there are three competing hypotheses:

• “ just, send, text” is the best hypothesis (cost 1.7),
but it creates some flickering because it doesn’t match the
prefix just, stand.

• “ just, stand, text” does not flicker, but it is not the
best hypothesis because its cost is 1.9.

• “ hello, rosa” is neither the best hypothesis and it does
flicker, so it should not be considered.

Given that the gap between the first and second hypotheses is
1.9 − 1.7 = 0.2, if α < 0.2, then the first hypothesis will be used
to generate a partial and we will show just, send, text, the
top hypothesis, but one that flickers. Conversely, if α > 0.2, then
we will show just, stand, text. Then, as new audio comes
in, the beam search continues using the original costs, 1.7, 1.9, and
20.0 regardless of the value of α.

In practice, we rescore through FST operations on the lattice.
First, given the previous partial, we build a linear FST that has a spe-
cial path for the prefix. An example for the prefix “ just, stand”
is shown on figure 4. There are two ways to exit the FST: Either we
stay in the start state and incur an exit cost, or, if allowed, we traverse
the prefix section of the FST and exit without an extra cost. Then we
compose the FST with the original partial hypothesis lattice, choose
the path with the lowest cost as the partial result.

4. EXPERIMENTS

To evaluate the quality of our algorithm, we based our model on [30]
with a streaming Conformer-Transducer. The encoder consists of 12
causal Conformer [31] layers, each with 23 frames of left context,
8-head self-attention and convolution with kernel size 15. We use
an embedding prediction network [32] with 2 previous labels as in-
put and an embedding dimension of 320. The joint network uses a
single feed-forward network with 640 units. The model was trained
with FastEmit to reduce the partial latency [26]. The encoder out-
put frame rate is 60ms. We use a fixed score difference from the
top hypothesis as the “beam width”, which often results in up to 10
hypotheses in the beam. For simplicity, we did not use the cascaded



UPWR UPSR PWER PL ∆

base 0.08 0.23 4.83 3,084
PEI = 100ms 0.05 0.14 4.81 3,106 +22
PEI = 200ms 0.03 0.08 4.78 3,149 +65
PEI = 300ms 0.02 0.06 4.84 3,171 +87
stab. thresh. = 0.1 0.08 0.23 4.86 3,084 0
stab. thresh. = 0.2 0.01 0.04 5.10 3,246 +162
stab. thresh. = 0.3 0.01 0.03 5.19 3,271 +187
α = 0.05 0.06 0.17 4.84 3,085 +1
α = 0.1 0.05 0.04 4.83 3,086 +2
α = 0.2 0.03 0.09 4.85 3,085 +1
α = 0.5 0.02 0.04 4.89 3,086 +2
α = 1.0 0.01 0.02 4.98 3,086 +2

Table 1: Sweep over our Voice Search over the parameter α. For all
experiments, the final WER was 6.2. It shows that it is verified ex-
perimentally that our algorithm does not alter final results. We then
show the previous partial flickering metrics, UPWR and UPSR, and
the newly introduces partial WER (PWER) and partial latency (PL
in millisecond) metrics. The ∆ column shows the increase in the PL
metric compared to the baseline. The first section is the base results,
the second and third sections are the algorithms of [22], and the last
section is our proposed algorithm. For all sections, we show both
the previous metric (UPWR and UPSR) and the additional metrics
we introduced (PWER and PL).

encoder nor the language model. The model was trained on 400k
hours of multidomain data [33], using a one-hot domain ID [21].

In table 1, we compare the results of different systems. The
baseline is the vanilla ASR system without any de-flickering ap-
proach, which shows a partial at every 60ms as the model output
frame rate. As a comparison, we also re-implemented the two pro-
posed de-flickering algorithms of [22]: The first approach is based
on increasing the partial emission interval (PEI), which is the time
we set between showing consecutive partial results from the ASR
recognizer. Naturally the larger we set the interval, the more stable
the partials are. The second approach uses a logistic regression ap-
proach from [23] to estimate the stability of partial results. Partial
words that have a stability score lower than a predefined threshold
are withheld from showing on the screen. Both approaches rely on
delaying the partials. As a result, we can see in table 1 that both
approaches can decrease flickering but at the cost of significantly
higher latency, compared to the baseline (see the ∆ column). We
see that the increase in the PL metric for the proposed algorithm is
negligible (about 2ms), while prior algorithms could increase latency
to noticeable values of up to 187ms.

On the other hand, our approach (with a sweep of α in table 1)
is much less punitive when it comes to latency, and still can achieve
similar or more flickering reduction, compared to the two approaches
above. This is a confirmation of the design approach that we had
chosen of not delaying the partials. As we increase α, we see mini-
mal impact on latency and steady reduction on flickering, while the
partial WER goes up slightly as expected. In general, the partial
quality regression caused by our approach is on par or lower than
the two approaches above.

Overall, it seemed that setting α = 0.2 provided a good balance
between quality, latency, and flickering. While α might have been
increased for the set in question, we wanted a robust choice under a
wide set of conditions, and thus decided against a more aggressive
setting. We thus fixed α = 0.2 and computed our new metrics both

Test set WER UPWR UPSR PWER PL ∆

Voice base 6.2 0.08 0.23 4.83 3,084
search α=0.2 6.2 0.03 0.09 4.85 3,085 +1
Smart base 9.6 0.08 0.20 4.82 2,581
speaker α=0.2 9.6 0.04 0.09 4.88 2,581 0
Phone base 5.8 0.07 0.24 4.08 4,532
assistant α=0.2 5.8 0.03 0.10 4.10 4,531 -1
Dict- base 5.7 0.29 0.60 4.56 2,707
ation α=0.2 5.7 0.24 0.43 4.56 2,707 0

Table 2: Effect of the de-flickering algorithm on partial flickering,
quality, and latency. The “WER” column is the final’s WER. It veri-
fies experimentally that our algorithm does not alter final results.

with and without the proposed algorithm on several test sets. The
results are shown on table 2. The difference in PL value across test
sets for a fixed model is simply a reflection of a different average
utterance length. We also see that the PL metric does not materially
change due to the proposed de-flickering algorithm. We are able
to roughly divide by two the amount of flickering with negligible
impact on both quality and latency. These results appear to be robust
across test sets. Thus, the choice of α = 0.2 seems to work well
under a wide range of conditions. Note that this choice is dependent
on the underlying model that generates hypothesis costs.

Additionally, we demonstrate the visual effect of the proposed
algorithm compared with the baseline and the increased partial emis-
sion interval approach on a Librispeech [34] utterance in our supple-
mentary video [11], where the proposed approach reduces flickering
without hurting the quality and latency of the partials as expected,
even though our model wasn’t trained on Librispeech.

5. CONCLUSIONS

Flickering is a result of the beam search and has some negative ef-
fects, both on the users and for subsequent systems that process the
output of ASR systems. Flickering can be reduced, but it typically
involves degrading the quality and latency of the partials.

In this paper, we first presented two new metrics that allow us to
measure the quality and latency of the partials. To our knowledge,
this is the first of such metrics for partials. Then, thanks to these
new metrics, we were able to devise algorithms to improve them. By
noticing the root cause of the flickering, we devised a better way to
pick a hypothesis from the beam to generate a partial. By introducing
some hysteresis, we were able to divide the the amount of flickering
by roughly half with very little impact on quality and latency. Our
algorithm is very lightweight, and has no noticeable impact on the
amount of computation required. It does not require training of a
new model, and is applicable to both conventional and end-to-end
recognizers. The rest of the behavior of the model is left unchanged.
In particular, because the beam search still behaves the same way,
the final result is unchanged.

Future work plans to build on the new metrics. Thanks to our
significantly improved measurement of partial results, we can safely
explore more complicated architectures. In particular, we plan to
expand our work to models with two-pass parallel streaming beam
search. While some models use non-causal cascaded encoders with
right context for only the final result [35, 30], others [36] modify the
beam search to occasionally use a larger causal model. Measured by
our new metrics, we can explore an approach to merge partials from
a non-causal decoder to maximize the partial quality while minimiz-
ing flickering and partial latency.
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