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Abstract
Both automatic speech recognition and text to speech systems
need accurate pronunciations, typically obtained by using both
a lexicon dictionary and a grapheme to phoneme (G2P) model.
G2Ps typically struggle with predicting pronunciations for tail
words, and we hypothesized that one reason is because they
try to discover general pronunciation rules without using prior
knowledge of the pronunciation of related words. Our new ap-
proach expands a sequence-to-sequence G2P model by inject-
ing prior knowledge. In addition, our model can be updated
without having to retrain a system. We show that our new
model has significantly better performance for German, both on
a tightly controlled task and on our real-world system. Finally,
the simplification of the system allows for faster and easier scal-
ing to other languages.
Index Terms: G2P, sequence-to-sequence, memory network,
dictionary augmentation

1. Introduction
Knowing the correct pronunciation for words is a critical part
of a text-to-speech (TTS) system. While some end-to-end
automatic-speech-recognition (ASR) systems [1, 2] do not use
pronunciations, most systems still require them to improve
recognition of tail words because they appear infrequently in
the training data.

The pronunciation system is usually a combination of a dic-
tionary and a predictive model. For common words, knowing
how to pronounce a word is simply a matter of looking up its
pronunciation (represented as a string of phonemes) in a dictio-
nary. However, given the size of the vocabulary in both TTS
and ASR, it is infeasible to have a complete coverage of all the
words. Thus, as a fallback, we typically resort to a predictive
grapheme-to-phoneme (G2P) model [3, 4, 5, 6].

How much effort to put into building a pronunciation dictio-
nary is usually dictated by a cost/quality tradeoff. Dictionaries
can be built by hiring expert linguists to transcribe the words but
this process is typically expensive and slow. Automatic pronun-
ciation learning techniques [7] are useful to grow the dictionary
but a G2P will always be needed and thus the option of improv-
ing its quality should be explored.

Typically, human languages follow some implicit rules to
predict pronunciation rules using prior knowledge. For exam-
ple, if you know that the word back is pronounced b { " k
and the word pack is pronounced p { " k then it is not un-
expected that the word backpack is pronounced b { " k p
{ % k, where we see that the primary stress markers in both
components, " is changed to a secondary stress % for one of a
component. The concatenation of pronunciation is not always
correct (for example for the city name Plymouth), but we hy-
pothethized that the more infrequent the word is, the more pre-
dictable its pronunciation is.

An accurate G2P should also be able to predict pronunci-
ation of inflected form. For example, in American English, if

the pronunciation of the word cat is k { " t, then native
speakers naturally derive the pronunciation of the word cat’s
to be k { " t s. However, appending the phoneme s is not
a strict rule to get the pronunciation of the possessive form, as
evidenced by the word dog’s pronounced d O " g z. For
proper nouns (Charles’s, Robert’s) the set is impractical
to cover in a lexicon. Thus, it would be useful to have a G2P
that is able to infer pronunciations from prior knowledge which
in this case is the pronunciation for the base form: cat.

One approach would be to hand-craft some rules, applied
after dictionary lookup but before G2P prediction. For exam-
ple, we could have some algorithm that strips the word to its
base form, then applies the G2P, then modifies the output to
predict the pronunciation of the full word. Even for American
English, this is nontrivial to do manually, as we would need,
for example, to handle possessive (e.g. cat’s) and plural
possessive (e.g. cats’) forms in addition to words that are
concatenations of subwords (e.g. activeminds in the URL
activeminds.org). Moreover, if we want to scale the ap-
proach to multiple languages, writing special rules will become
increasingly expensive.

The hand-crafting of rules is even more complex for syn-
thetic languages (languages where forming new words from
base words/morphemes is very common) e.g. Germanic lan-
guages with productive compounding and Slavic languages
with intricate morphology. If the base words are already rare,
the combined word will be extremely rare but a native speaker
might still know how to pronounce it by using the pronouncia-
tion of its components. For traditional G2Ps, a compound word
appears like a completely new word, devoid of relationship to
its subwords. This is both counterintuitive because it does not
mimic humans but also counterproductive because it ignores ex-
isting data.

Thus, we would like to have a single G2P model where we
can inject prior knowledge. We would want this model to be
end-to-end in the sense that it is trained all at once, without hav-
ing to fine-tune some manually written rules. We would want
this model to be able to read new knowledge, so for example if
an expert linguist or a pronunciation learning algorithm adds a
new pronunciation for a base form we can expand our lexicon
dictionary and have the G2P use the new data without retraining
the neural network.

2. Prior work
There is an extensive history of work on G2Ps [6]. Some pio-
neering work used finite-state transducers (FSTs) [8] and LSTM
neural networks [3]. Recent approaches however, have focused
on using sequence-to-sequence [9] models using either recur-
sive neural network transducers (RNN-T, [4, 5]) or listen at-
tend and spell (LAS, [10]). Sequence-to-sequence models have
found a wide range of applications beyond G2Ps, including ma-
chine translation [11].

Machine translation is of particular interest because of the
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Figure 1: Word splitter
issue of tail word distribution. Given the Zipf distribution of
words in a language, even the largest data sets will not have
complete coverage. The challenge is similar to the one faced
by G2Ps that have to predict pronunciations of tail words and
we thus would like to find an efficient way of adding a memory
bank to a neural network.

Another general approach has been provided by Neural Tur-
ing machines [12], but this approach may not be suited for our
problem. In our case, we do not need to read and write to a
comparatively small memory bank, but rather only read from a
large dictionary. Similarly, networks that use a general memory
approach [13, 14] might be able to perform the task at hand but
might be too slow for real-time systems.

The approach that was the closest to our needs was an
augmentation of a machine translation network [15]. Our ap-
proach follows the idea of augmenting the input of a sequence-
to-sequence model to inject some additional information. We,
however, had to solve two issues that only exist with G2Ps.
First, while in machine translation it is possible to decompose a
sentence into words, in our case, we do not a-priori know what
the sub-components of a word are. We thus needed to have a
way to find the sub-components. Second, we do not have a one-
to-one mapping from the word in one language to the word in
the other, but instead in our case, we need to force-align a se-
quence of graphemes to a sequence of phonemes. Nevertheless,
the approach of [15] was inspiring in the design of our algo-
rithm.

3. Model
The first step of the algorithm is to split a word into its com-
ponents. We first build an FST that contains all the words in
the lexicon with paths shared for as long as the prefixes of the
words match.

3.1. Word splitter

Figure 1 shows a simplified example of such an FST for a lexi-
con that only contains the words bag, ban, bans, and pack.
The FST accepts the sequence of letters b, a, and g through
states 0, 1, 2, and 4. Then a loop back from state 4 to 0 emits
the word bag. The words ban and bans are represented by
states 0, 1, 2, and 3 and 0, 1, 2, 3, and 5, respectively. We can
see that since the words bag, ban and bans share a 2-letter
prefix, their paths are shared up to state 2.

In addition to the sub-word candidates, we also have free-
grapheme loops that start and end at state 0, with arcs that are
weighted. The resulting FST is called S. To decompose a word
like backpacks, we first construct an input FST I as shown
in figure 2.

Finally, we find the max-covering of the input words. We
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Figure 2: Input FST I for the word “backpack”

Figure 3: Structure of 4D dictionary tensor
compute the composition of the two previous FSTs: I ◦ S and
find the top N lowest cost best paths. In the example above, the
best path goes through the loop graphemes b, a, c, and k. Then,
it goes through the word pack, and finally again through the
loop grapheme s. The total cost of this path is the total number
of loop graphemes: 5. If we had included the word back in the
S FST, we would have had a lower of 1 (single loop grapheme
s at the end).

In practice, we filter lexicon entries that are too short (3
characters or below). In particular, this prevents single-letter
entries from being candidates for subwords. Note that this does
not mean we won’t learn affixes. If the model sees a lot of exam-
ples for a highly productive affix, say German -er, then we’d
see a lot of training examples of the form base+erwith the prior
knowledge of the pronunciation for base. The model will learn
how to pronounce a base+er word given the pronounciation of
the base. We also filter out words that match the entire input,
because in practice, if we have a pronunciation for the word it-
self, the G2P will not be called and we want the network to train
with more than just copying its hint.

3.2. Force-align tensor

We build a 4D tensor to encode the matches, as shown in figure
3. Its dimensions are:

• I Number of matches: number of subwords that are
matches of the input. This dimension could be zero if
there is no match.

• J Number of graphemes in the input word.
• K Maximum number of phonemes in all the matches.
• L Embedding of the data.

For a given match index, whenever the word grapheme does
not correspond to the subword, the value of all the embedding
entries is 0. Otherwise, the embedding encodes the following
information:

• log (len(subword)). For “pack” that value is log 4.
• distance from start(grapheme)/len(subword). For

“pack” that value goes from 0/4 to 3/4.
• distance from end(grapheme)/len(subword). For

“pack” that value goes from 3/4 to 0/4.
• log (len(pronunciation)). For “pack” that has pronun-

ciation “p { k” the value is log 3.
• distance from start(phoneme)/len(pronunciation).

For “pack” that value goes from 0/3 to 2/3.
• distance from end(phoneme)/len(pronunciation).

For “pack” that value goes from 2/3 to 0/3.
• One-hot encoding of the grapheme.
• One-hot encoding of the phoneme.
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Note that the value of I will vary depending on the input.
If there are no matches (determined as in section 3.1), then I
will be zero. For each example, the value is different. Once the
training is done, we can still add new words to the lexicon, so
that the value of I depends on the input data, and we don’t need
to retrain the network when we add pronunciations to the dic-
tionary (although if we add many of them, a retrain might still
be beneficial). Section 3.3 will show how we handle a varying
number of matches.

We hypothesized that the number of possible splits is small
for tail words. For example, in English the word carshow
could be decomposed into car and show or cars and how.
This could likely be improved with additional morphology and
frequency data, but our model currently does not support this.
Thus, the performance is dependent on the number of splits,
which we hypothesized is small for tail words.

3.3. Force-align network

The goal of the force-align network is to reduce the dimension-
ality of the 4D tensor from section 3.2. We want to remove the
first dimension (of size I) and the third dimension (of size K).

To remove the third dimension, we use a quadridirectional
LSTM on the dimensions J and K, with dimension I used as
a batch. This could be thought of as a force-align, because
the network has access to both the graphemes and phonemes,
and can learn which phonemes correspond to which graphemes.
Additionally, the embeddings of section 3.2 give hint of the ap-
proximate location of the match. Note that the force-align is
not strict because a single phoneme can correspond to multiple
graphemes (like k in the word chiral), or multiple phonemes
can correspond to a single grapheme (like d V b @ l j u
in W).

After the quadridirectional LSTM, we have another 4D ten-
sor of dimensions (I, J,K,L′). The last dimension L′ is a pa-
rameter of the model. We only take the first slice for the third
dimension, and get a 3D tensor of dimensions (I, J, L′).

Finally, to remove the first dimension I , we average over all
matches. We thus get a 2D tensor of dimension (J, L′). If there
are no matches, the tensor is set to be zero.

We can now augment the input of traditional sequence-to-
sequence models. Both RNN-T and LAS models for G2Ps have
the sequence of one-hot encoded graphemes as an input. Thus,
the dimension of the input is (J,M) where M is the number
of grapheme symbols used. By concatenating this tensor with
the output of the force-align network, we get a new input of
dimension (J,M + L′) which can be transparently used by
sequence-to-sequence models. The data encoded in the output
of the force-align network is a hint of what the pronunciation of
that letter (in this neighborhood) should be.

4. Experiments
4.1. Model parameters and training data

We trained two RNN-T models one with dictionary augmen-
tation, and one without. Both models used an encoder with 3
LSTM layers, each with 256 units. We used dropout [16] with
a keep value of 0.9.

The decoder used RNN transducers [4, 9, 5] where the de-
coder network used 3 LSTM layers, each with 256 units. We
used dropout with a keep value of 0.6 for both models.

In the base condition, we did not augment the input with
any force-align data. In the test condition, the force-align
network had 3 quadridirectional LSTM layers, each with 128
units and a dropout keep probability of 0.6. The output of the
force align (of dimension input length x 128) was concate-
nated to the input graphemes (of dimension input length

x number letters in alphabet) along the first dimen-
sion. Thus, the only difference betweeen the two models is the
presence/absence of the dictionary augmentation network. All
other parameters were identical.

We chose to investigate the performance of the model on a
G2P for German words. German has both morphological varia-
tion and a productive agglutinative aspect, so it is a good exam-
ple of how using our model can result in significant differences
between the base and test case. In addition, it is a language that
has a wide enough usage that we would both have enough lex-
icon data and any improvement would benefit many users. We
had at our disposal a lexicon consisting of hundreds of thou-
sands of entries, split randomly in 80% train set, 10% test set,
and 10% dev set.

We had the lexicon available in two formats, a version with
pure phonemes and another which had phonemes along with
stress markers and syllable boundaries annotated. Getting the
latter right is harder, but it is not clear to what extent they impact
speech applications (we add listening test evaluations to remedy
that). Also, often an important aspect of agglutination of words
is that the stress and syllabification might be affected. Thus, we
decided to train G2Ps on the stressed syllabified phonemes.

4.2. Results on held-out set

We first looked at the performance results on the test set. After
the same number of iterations, the model that used the dictio-
nary input had better performance than the one that did not (see
table 1); We saw a relative reduction of about 28% in the num-
ber of errors made. While encouraging, this measure does not
fully represent the performance of the new model in its intended
use. Indeed, here we have compared performance on a random
subset of our lexicon, which, by design, focuses on head words.
However, the G2P is intended to be used precisely when there
is no entry in the lexicon, typically for tail words.

Baseline model 86%
Dictionary-augmented model 90%

Table 1: Performance on test set. Accuracy (higher is better).

4.3. Side-by-side analyses

We ran side-by-side comparisons of the performance of the base
and test models. We took a random sample of our TTS traf-
fic and synthesized sentences using both models. The synthe-
sis used the entire TTS stack (text normalization, verbalization,
etc...) including the lexicon data. Thus, this was a faithful rep-
resentation of the impact of the new model on voice quality.

Every word where the final phonemic representation was
identical between base and test was discarded. This could have
been because either the word was in the lexicon or the two mod-
els, while different, predicted the same pronunciation for that
word. We then synthesized the audio waveform from the phone-
mic representation and played both to raters. These raters were
native German speakers, but had otherwise no profesional back-
ground in linguistics.

The rating task was in two steps. Native German speak-
ers were asked to listen to a TTS rendering of both pronunci-
ations. Then, for each, they could indicate whether the pro-
nunciation was “correct”, “incorrect”, or they were “unsure”.
In case they indicated that both pronunciations were “correct”,
then they were asked a follow-up question as to which pronun-
ciation they preferred, if any. For all questions, we randomly
flipped the display so that raters were blind to which side was
the base and test algorithm. We used this setup for two different
experiments described in the sections below.
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4.3.1. Dictionary-augmented sequence to sequence versus
plain sequence to sequence

The goal of this experiment was to isolate the effect of dictio-
nary augmentation. The difference was in the G2P. In the base
condition, we used the sequence-to-sequence model that did not
use dictionary augmentation (the base model of section 4.2). In
the test condition, we used the sequence-to-sequence model that
had dictionary augmentation (the test model of section 4.2).

Correct Incorrect
Baseline model 53.5% 36.9%
Dictionary-augmented model 65.0% 25.4%

Table 2: Side-by-side to measure the effect of dictionary aug-
mentation (N=2,973)

Test model better About the same Base model better
19.6% 66.9% 13.5%

Table 3: Preference when both pronunciations are judged cor-
rect (N=2,973)

The results are shown in tables 2 and 3. We had N=2,973
rating tasks, and we see that the algorithm that used dictio-
nary augmentation produced correct pronunciations more often
(65.0%) than the algorithm that did not use dictionary augmen-
tation (53.5%). Note that the percentages do not add up to 100%
because the raters had the option to indicate that they were un-
sure (the words being rare, it is not surprising to have a non-
negligible number of ratings that fall in this category). For the
ratings where both pronunciations were judged as correct, we
still see a preference for the model that uses dictionary aug-
mentation (19.6% versus 13.5%) even if both variants are often
equally liked.

4.3.2. Dictionary-augmented sequence to sequence versus pre-
vious algorithm

The goal of this experiment is to test whether we can replace
hand-crafted rules with our new model. We compared two
algorithms to generate pronunciations. The base model was
our current production system, that used manually-curated sub-
word rules and our current G2P. The test model did not have
any manually-curated rules and used our dictionary-augmented
G2P. The rules of the base model were determined by a na-
tive speaker engineer who decided how to split words into sub-
components, refer some pronunciations from lexicon and re-
combine the individual pronunciations to form the final out-
put using a combination of handwritten grammars and manual
blacklisting/whitelisting. While the measurements we report in
this section are less crisp and tightly controlled than in section
4.3.1 we felt that they could be insightful because they measure
the quality of the new algorithm precisely how it is intended to
be used in a real production system. This model also has the
advantage of being end-to-end in the sense that it handles both
subword discovery and pronunciation prediction.

Correct Incorrect
Manually written rules 69.4% 21.7%
Dictionary-augmented model 75.1% 16.0%

Table 4: Side-by-side to measure the effect of dictionary aug-
mentation (N=2,985)

Test model better About the same Base model better
21.0% 64.4% 14.6%

Table 5: Preference when both pronunciations are judged cor-
rect (N=2,985)

The results are shown in tables 4 and 5. We had N=2,985
rating tasks, and we see that the algorithm that used dictio-
nary augmentation produced correct pronunciations more often
(75.1%) than our current production system (69.4%). We ob-
served a similar pattern in ratings that are not definitive. For the
ratings where both pronunciations were judged as correct, we
still see a preference for our new model (21.0% versus 14.6%)
with still a high amount of variants that are equally liked.

5. Discussion
A G2P is a critical component of both ASR and TTS systems.
While we usually rely on pronunciation lexicons to know the
correct pronunciation of words, they typically cannot cover the
entire vocabulary and we have to use a G2P as a fallback. Thus,
by definition, a G2P is typically used to predict the pronuncia-
tion of tail words.

Usually, lexicon and G2P are only loosely coupled. While
we use the lexicon data to train a G2P, once the training is done,
the two systems operate independently. If we add words to the
lexicon, the new information can only be propagated to the G2P
by doing a full retraining.

Another limitation of loosely coupled G2Ps is the intent of
the training task. We typically intend the G2P to learn general
rules about how words are pronounced. We hypothesized that
it is not a full picture of how languages work and that small
variants, or compositions of words would result in pronuncia-
tions that would be highly dependent on the pronunciation of
the base words. In these cases, the G2P needs to learn specific
rules about how one word is pronounced given its base compo-
nents’ pronunciations. This is contrary the way G2Ps are cur-
rently approached.

Our new model demonstrates how to implement such G2Ps.
It is based on an existing sequence-to-sequence model, where
we augment the input. This model has several advantages. It is
flexible and the augmentation is compatible with a wide variety
of sequence-to-sequence models, since only the input is modi-
fied. This addition is orthogonal to the architecture of the rest
of the model, and thus we do not need additional modification.
Another advantage is that we can inject new knowledge without
having to retrain the G2P.

We measured the quality of the new G2P both on a test set
and by doing side-by-side experiments. In all cases, we saw
an improvement of the pronunciations that were predicted. A
strict comparison that highlights the differences of augmenta-
tion shows the benefits of our approach.

A comparison against our current production system also
reveals improvements. Not only can we obtain better perfor-
mance with our new model, we were also able to remove the
need to manually curate and write rules for how to predict the
pronunciation of a word given its sub-components. Thus, our
new model also greatly simplifies the architecture of our sys-
tem, reduces the engineering effort, and allows us to scale to
more languages, especially those where finding engineers fa-
miliar with the linguistics is difficult. We thus plan to extend
the approach to other languages such as Dutch, Swedish, Nor-
wegian, and Finnish.

While the approach here was solely focused on G2Ps, we
believe that the idea of injecting knowledge has application in
many parts of ASR and TTS systems because the distribution
of words is such that being able to inject knowledge about tail
words is useful. Thus, future work will also focus on applying
the results presented here to a wider range of systems.
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