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Abstract
Most speech recognition systems rely on pronunciation dictio-
naries to provide accurate transcriptions. Typically, some pro-
nunciations are carved manually, but many are produced using
pronunciation learning algorithms. Successful algorithms must
have the ability to generate rich pronunciation variants, e.g. to
accommodate words of foreign origin, while being robust to ar-
tifacts of the training data, e.g. noise in the acoustic segments
from which the pronunciations are learned if the method uses
acoustic signals. We propose a general finite-state transducer
(FST) framework to describe such algorithms. This representa-
tion is flexible enough to accommodate a wide variety of pro-
nunciation learning algorithms, including approaches that rely
on the availability of acoustic data, and methods that only rely
on the spelling of the target words. In particular, we show that
the pronunciation FST can be built from a recurrent neural net-
work (RNN) and tuned to provide rich yet constrained pronun-
ciations. This new approach reduces the number of incorrect
pronunciations learned from Google Voice traffic by up to 25%
relative.
Index Terms: speech recognition, pronunciation learning

1. Introduction
Many state of the art automatic speech recognition (ASR) sys-
tems are composed of three main models: the acoustic model
(AM), the pronunciation model (PM), and the language model
(LM). Loosely speaking, the AM transforms a raw audio wave-
form into a stream of phoneme probabilities, the PM transforms
a stream of phoneme probabilities into a stream of word prob-
abilities, and the LM transforms a stream of word probabilities
into a stream of sentence probabilities. The final recognition is
the most probable sentence.

Typically, PMs are a combination of a word-to-
pronunciation dictionary and a grapheme-to-phoneme (G2P)
model [1, 2, 3] as a backoff. When a word is present in the
dictionary, we use the corresponding pronunciation. Otherwise,
a G2P model attempts to predict the pronunciation from the
spelling.

Having an accurate G2P is critical: Without a correct pro-
nunciation, an ASR system might not be able to recognize some
uncommon words. However, even native speakers of some lan-
guages have difficulty knowing how to pronounce some words.
For example, in American English, the pronunciation of words
such as “Canada” (from “La Canada Flintridge” /k @ n j A d @/),
“Bexar” (County in Texas, /bE@r/), “Lhuillier” (from “Monique
Lhuillier” /l u i l i ô/) are not obvious. Building a G2P that per-
forms better than humans is a formidable challenge.

For this reason, building an accurate pronunciation dictio-
nary from data has been an active field of research for at least
two decades. For example [4] used manually-curated rules and
[5] used a decision tree approach. Pronunciation learning al-
gorithms must balance the need for flexibility so that they can
learned varied pronunciations with the requirement to be con-
strained enough so that the results are accurate and robust to
noise. Earlier research used decision trees [5] to strike this

balance. More recently, algorithms using expectation maxi-
mization algorithms [6, 7, 8], hidden Markov models [9, 10],
discriminative training [11] have yielded significant improve-
ments.

In this paper, we revisit an FST-based pronunciation learn-
ing algorithm [12, 13, 14] that in essence flips what is unknown
in a speech recognition task. In a traditional speech recognition
task, we fix the pronunciation of each word and the sequence
of words is not known. Using the phoneme probabilities from
the AM, we find the most likely path, thus finding out the most
likely sequence of words. In the pronunciation learning task, we
fix the sequence of words and the pronunciation of each word is
not known. Using the AM, we find the most likely sequence of
phonemes.

Figure 1 illustrates the current FST-based algorithm. From
the transcript “good old way”, we create a finite state transducer
(FST, [15]) that has three sections (one for each word). We
use a G2P candidate generator that gives several hypotheses for
the pronunciation of each word. In the figure, we show three
pronunciation candidates, but in practice we generate 20 candi-
dates. This approach, however, suffers from several drawbacks.

First, the pronunciation candidate set lacks diversity. Of-
ten times, the correct pronunciation is not in the top 20 candi-
dates, making it impossible to learn, no matter how much audio
data the algorithm has at its disposal. Increasing the number of
candidates is not efficient because their number grows exponen-
tially with the number of graphemes in the word.

A second drawback is that the current approach does not
weigh the various pronunciations. While having diversity of
candidates is important, the graphemes still convey some infor-
mation, and, as we will show below, using them improves the
quality of the pronunciations learned. Other drawbacks include
lack of independence between each pronunciation learned for a
given word, inefficiency of aggregating examples, strict depen-
dence on graphemes, inability to learn from multiple transcripts,
and awkward handling of verbalization.

The proposed general algorithm has an infinite number
of candidates and at the same time retains (and controls the
amount of) importance given to the graphemes. It naturally ex-
tends to multiple transcripts and multiple verbalizations. It also
can learn pronunciations in the case where graphemes are not
known.

2. A more general architecture
The insight of the proposed algorithm comes from observing the
two types of arcs on the FST built in the old algorithm (figure 1).
The first type of arcs are those that accept epsilons and output
words. The second type of arcs are those that accept a phoneme
and output the same phoneme. In the proposed approach, we
split the construction of the FST in two steps: first construct
the FST with arcs that outputs words, and second construct the
various FSTs with arcs that output phonemes. There are many
ways to build the second kind of FSTs; we describe some of
them, but the approach is general and it is easy to add new ways.
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Figure 1: FST for old algorithm for transcript “good old way”
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Figure 2: Transcript FST skeleton

2.1. Building the transcript FST

In this section, we describe how to build the FST with arcs that
output words (figure 2). The approach is an extension of the
multiple-transcript approach proposed in [16]. For each pos-
sible transcript, we create one or more verbalized transcripts.
Then, for each verbalized transcript, we create a branch of an
FST that consists of a sequence of phoneme-to-phoneme-FST
(described below) and epsilon-to-word FST.

For clarity, consider an example where it is unknown
whether the transcript is “war of 1812” or “other transcript”.
We first verbalize both transcripts, resulting in transcripts “war
of eighteen twelve”, “war of one eight one two”, and “other
transcript”. We then built the FST of figure 2 where the FSTs
for the words (rectangular boxes) still need to be built.

2.2. Building the word FSTs

In this section, we describe various ways of building the word
level FSTs. All these FSTs are acceptors: the inputs and outputs
are the same. These acceptors allow only a subset of phoneme
sequences and/or give a weight to phoneme sequences.

2.2.1. Lexicon FST

For a given word, this FST accepts either the pronunciation in
the dictionary, if present, or the top G2P pronunciation, other-
wise. On its own, this FST has very little use, because with it
we would simply learn what we already know or use the cur-
rent best guess we have. In other words, using this FST is the
same as doing a force-alignment. We will show its usefulness
in section 2.3.

2.2.2. N-best FST

This FST used a candidate generator to create of list of N pro-
nunciations. The resulting FST accepts only these pronuncia-
tions. Using this FST, we replicate the behavior of the prior
algorithm, except that we can handle multiple transcripts and
verbalizations.

2.2.3. Free-form FST

This FST is a simple loop on itself that accepts any and an arbi-
trary number of phonemes (figure 3). Thus, this simply reads in
the most likely phonemes from the acoustic model.

2.2.4. Phonotactic FST

Using special linguistic knowledge, a phonotactic FST can be
manually built. These phonotactic constraints are language-
specific and are built from linguistic knowledge [17]. The con-
straints are the same regardless of the graphemes, but the FST
is more restrictive than the free-form one of 2.2.3. For example,
for American English, phonotactic constraints would prohibit
the pronunciation /p z b s s p p/.

0

@:@

z:z

Figure 3: Free-form FST. For simplicity, we omitted most
phonemes

2.2.5. G2P FST

Previous work [18] on building a G2P used an FST. This FST,
F , accepts graphemes and outputs phonemes. The arcs of F
have weights. Instead of using it to generate candidates for each
word we can create another FST, G, that accepts epsilons and
outputs graphemes. We then compute the composition G ◦ F ,
resulting in an FST that accepts epsilons and outputs phonemes.
By doing a projection that copies the output symbols of each arc
to the input symbols, we get a weighted FST that can be readily
used for pronunciation learning.

We call this approach FST-based phonographic pronuncia-
tion learning.

2.2.6. Neural language model expansion FST

Recent progress [19] in the design of neural networks simplified
sequence to sequence modelling and in [20], the authors use
this approach to create a new G2P. A full description of the
technique is beyond the scope of this paper; what we show here
is how to use this new G2P for pronunciation learning.

The essence of the approach of [20] is to encode the
grapheme sequence into a state vector. Then, using a decoder,
the model recursively outputs phoneme symbols. For each step,
the input of the decoding network is the previously predicted
phoneme and the current state. The decoding starts with a spe-
cial sos symbol. The decoding stops once the network pre-
dicts a special eos phoneme (figure 4). For simplicity, we
only show the first two unrolling steps and only for a subset
of the phonemes. The resulting tree-shaped FST is infinite. The
weight of each arc is the probability assigned by the neural net-
work for this transition, as computed with a softmax.

In [20] the authors find the most likely path from sos to an
eos. However, in pronunciation learning, we keep the entire
FST. Each arc has a weight according to its likelihood and we
combine this weight with the AM weight during decoding. Due
to the very large size of the FST, we only explore sections of it
during the decoding, using a lazy FST expansion API [21].

This approach has the additional advantage of having two
tunable hyperparameters. The first hyperparameter is the Boltz-
mann temperature τ of the softmax output:

pi =
ezi/τ∑
j e
zj/τ

(1)
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Figure 4: FST built from sequence-to-sequence model.

The temperature τ serves to control the “spikiness” of the
output, thus controlling candidate diversity. Set to 1.0, it pre-
serves the original model outputs; set to∞, it makes each tran-
sition equiprobable; and in the limit near 0, the output is a pure
maximum function.

The second hyperparameter is the relative weight α of the
AM and PM models. The beam search algorithm minimizes the
total cost of the path, computed as the sum of the AM and PM
costs:

TotalCost = α.AMCost + (1− α).PMCost (2)

By tuning α, we can control the importance of the AM ver-
sus the PM.

Using either of these parameters, we can smoothly tune
the algorithm from a grapheme-free pronunciation learning to
a force-alignment (no pronunciation learned, we only use the
graphemes to get the top candidate). If we either make the PM
cost relatively more important or if we make the softmax output
more spiky, we pay more attention to the graphemes and be-
come more like a force-alignment. Conversely, if we make the
AM cost relatively more important or if we make the softmax
output more smooth, we pay more attention to the acoustic data
and become more like a grapheme-free pronunciation learning.

The correct tradeoff between pure G2P and grapheme-free
is task-dependent. For tasks where the AM has high accuracy,
the audio is of high quality, the prediction of pronunciation from
graphemes is difficult, or the PM is of low quality, we should
favor the AM. Conversely, in case of low-accuracy AM, noisy
audio, or easy to predict pronunciation from graphemes and ac-
curate PM, we should favor the PM.

We call this approach RNN-based phonographic pronunci-
ation learning.

2.3. Learn one at a time or all at once

While the algorithm works by replacing the boxes FST (word)
in figure 2 with one FST build according to one algorithm of
section 2.2, it has to be done carefully.

Consider, for example, the simple transcript “good old
way” where we learn the pronunciations by using a free-form

FST (section 2.2.3) for all the words. Even if the AM is perfect,
there will be ambiguity because we don’t know how to place
word boundaries in the sequence of phonemes “g U d oU l d w
eI” and we could end up learning that the word “good” is pro-
nounced “g U d oU”. For some word FSTs, such as N-Best FST
(section 2.2.2), there is almost never any ambiguity.

We thus need to resort to two approaches, depending on
whether the word FST creates some word-boundary ambiguity
or not. If there is no ambiguity, then we can substitute all the
boxes of the form FST (word) in figure 2 with the appropriate
FST.

However, if there is some ambiguity, we need to learn
words one at a time. In this case, we loop over all the words
in the verbalized transcript. For the word we are currently in-
terested in, we use the FST that enables us to learn a pronuncia-
tion (for example, a free-form FST). For the other words, we fix
the pronunciation using the lexicon FST (section 2.2.1). This
means sometimes we don’t learn any pronunciation at all. For
example, if the transcript is “war of 1812” and the word-to-learn
is “eight” (figure 2), it is very likely that given the audio data,
that branch is not taken, and we do not learn anything.

Learning one word at a time is computationally more de-
manding. We can speed up the computation by skipping very
common words: There is no point in learning the pronuncia-
tion for the word “the”. However, we cannot skip all the words
that are already in our dictionary, because we might miss new
pronunciations for existing words.

3. Experiments and results
3.1. Building two evaluation sets

To measure the performance of the new algorithm, we used two
data sets. The first data set is a random sampling of Google
anonymized voice traffic. We used it to measure the qual-
ity of the pronunciation learning algorithms on general traffic.
The second data set comes from voice traffic that was followed
within 30 seconds by a typed correction by the user. If that
typed correction only changed a single word, we keep the utter-
ance and use the typed transcript. We can use this set to magnify
the differences between the algorithms by purposely choosing
traffic that contains difficult to recognize words. For both sets,
we needed to get a phonetic transcription of the words.

Since the phonetic transcription is expensive, we used a
combination of untrained raters and trained linguists to tran-
scribe all the words. For the untrained raters, we synthesized
audio from the learned pronunciations and asked them to com-
pare it to the original audio.

After rating, we divided the words in our dataset into three
categories:

• Words for which the pronunciation learned by one algo-
rithm differs from the pronunciation learned by the other
algorithms.

• Words for which all the pronunciation learning algo-
rithms agree and the non-linguist raters say it is different
from the synthesized audio.

• Words for which all the pronunciation learning algo-
rithms agree and the non-linguist raters say the word in
the synthesized audio has the same pronunciation as in
the original audio used in pronunciation learning.

We then asked trained linguists to transcribe the correct pro-
nunciations for words in the first two categories. For the words
in the third category, we took the learned pronunciation as cor-
rect. This approach guarantees that the relative strength was al-
ways correctly evaluated, while saving some transcription cost
by having a slightly noisier absolute performance measurement.
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Table 1 shows the results on the random sampling set. We
compare the performance of the prior algorithm with the phono-
graphic algorithm based on a neural network model. The new
algorithm has 25% fewer errors (relative).

Baseline algorithm (section 2.2.2) 84%
Neural model (section 2.2.6) 88%

Table 1: Performance on randomly-sampled traffic. Accuracy
(higher is better).

To magnify the differences between the algorithms, we built
a data set that comes from typed corrections. We also filtered
out about 500,000 pronunciations that were already in our dic-
tionary, thus replicating the conditions in which we would run
the algorithm in production.

Force-alignment (section 2.2.1) 30%
Baseline algorithm (section 2.2.2) 48%
From G2P FST (section 2.2.5) 57%
Neural model (section 2.2.6) 57%
Neural model, tuned τ and α 62%
Phonotactic (section 2.2.4) 31%

Table 2: Performance on typed-after-voice traffic. Accuracy
(higher is better).

Table 2 shows the results on typed-after-voice traffic. The
force-alignment shows the perforance if we don’t do any pro-
nounciation learning: We get only 30% of the words correct.
The baseline algorithm improves that figure by getting 48% cor-
rect. By comparing this number to the FST from the G2P or the
neural model, we see the improvement from not being limited
to a fixed number of candidates. We see further gains by tun-
ing the parameters τ and α. Finally, the phonotactic approach
(which relies principally on the acoustic model) shows that we
do need to take into account the graphemes, and that the optimal
weight given to them should be tuned.

3.2. Impact on ASR

As an additional way to evaluate the performance of the new
algorithm, we ran the neural model with tuned τ and α (table 2)
on 90 days of typed corrections.

We filtered out many newly learned pronunciations. First,
we filtered out about 500,000 pronunciations that we already
had in our dictionary. We also excluded pronunciations that had
been already learned from the same set, but using our old algo-
rithm. We aggregated the learned pronunciations across several
utterances and filtered them by frequency (e.g., a threshold on
the ratio of word-pronunciation pair occurrences over word oc-
currences). The frequency filters were identical for both algo-
rithms. Finally, non-linguist raters checked the pronunciations
learned by listening to the original utterance and compared it
with a TTS-rendered version of the newly-learned pronuncia-
tion. We only kept the pronunciations that were marked as cor-
rect. This yielded about 2,000 new pronunciations.

We observed that the proportion of pronunciations that hu-
mans marked correct went up to 71% from 64%, despite the fact
that we had already mined this data set using the old pronunci-
ation learning algorithm. In other words, we were able to learn
new pronunciations from an already used dataset and still get
more of them correct.

To confirm that the pronunciations learned were helpful,
we measured their impact on ASR performance. We added the
2,000 new pronunciations to our dictionary and rebuilt the LG

Figure 5: ASR side-by-side comparison of the addition of new
pronunciations. The x-axis is the number of utterances. The y-
axis is the quality of the recognition, as judged by human raters
for the base recognizier (blue) and the one with the added pro-
nounciations (red).

FST. Since our existing pronounciation dictionary already con-
tains many words, evaluating the impact the word-error rate on
test sets would require an extremely large set. Instead, we ran
the recognizer over audio traffic not overlapping with the traf-
fic used to learn the pronunciations. For every utterance where
the recognition was different between the two models, we asked
non-linguist raters to judge the quality of the recognition. We
observed clear improvement of the recognition (figure 5). The
new model (in red) produces many fewer transcriptions that
were judged “nonsense” or “unusable” and many more “usable”
and “exact”. On a per-utterance basis, about 4.75 recognitions
were improved for each worsened recognition. The differences
were statistically significant at p < 0.001.

4. Conclusions
We have described a more general approach for learning pro-
nunciations from audio. Instead of the rigid construction of an
LG FST, we show a generic approach to building the FST. This
generic approach is a superset of the previous approach, but it
can also do force-alignment and text-free pronunciation learn-
ing.

One of the possible algorithms uses a RNN-transducer neu-
ral network. This approach has an infinite number of candi-
dates, while at the same time uses the graphemes to guide the
learning. This frees us from the systematic error where the cor-
rect candidate is not in the candidate list. We have at our dis-
posal two knobs to tune the amount of importance given to the
graphemes.

We used the tuned algorithm to learn pronunciations and
showed improvements in several ways. On a golden set, we re-
duced the number of errors by about 25% relative. On a large set
of typed corrections, we improved the number of accepted new
pronunciations despite the fact that we were re-mining the set.
Finally, we showed that the newly learned pronunciations had
a highly statistically significant impact on ASR quality, with a
4.75 to 1 improvement over regression ratio.
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