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ABSTRACT

Recurrent Neural Network Transducer (RNN-T), like
most end-to-end speech recognition model architectures, has
an implicit neural network language model (NNLM) and
cannot easily leverage unpaired text data during training.
Previous work has proposed various fusion methods to in-
corporate external NNLMs into end-to-end ASR to address
this weakness. In this paper, we propose extensions to these
techniques that allow RNN-T to exploit external NNLMs
during both training and inference time, resulting in 13-18%
relative Word Error Rate improvement on Librispeech com-
pared to strong baselines. Furthermore, our methods do not
incur extra algorithmic latency and allow for flexible plug-
and-play of different NNLMs without re-training. We also
share in-depth analysis to better understand the benefits of
the different NNLM fusion methods. Our work provides a
reliable technique for leveraging unpaired text data to signifi-
cantly improve RNN-T while keeping the system streamable,
flexible, and lightweight.

Index Terms— RNN-T, language model fusion, stream-
ing end-to-end speech recognition, leveraging unpaired text

1. INTRODUCTION

Recurrent Neural Network Transducer (RNN-T) [1–5] has be-
come one of the most popular model architectures for on-
device streaming automatic speech recognition (ASR) over
the last few years. Compared to traditional hybrid ASR sys-
tems, RNN-T is much more compact due to the lack of exter-
nal n-gram language models (LMs) and decision trees. Com-
pared to other end-to-end ASR approaches such as encoder-
decoder with attention [6–10], RNN-T is easier to stream and
generally works better in low-latency scenarios where the en-
tire utterance is not available up front and partial decoding
results need to be emitted during decoding.

Although RNN-T has the advantage of streamability over
encoder-decoder based ASR models, a recent study [11]
found that the prediction network of RNN-T, often thought
of as an implicit LM, shows poor results in modeling long-
range linguistic information. In addition, the model’s end-
to-end nature makes it difficult to leverage unpaired text data

to further improve performance. Many recent works have
investigated methods for using text-only data to improve
encoder-decoder based ASR models, including fusion with
an external neural network LM (NNLM) [12–16]. There has
been comparatively limited work on NNLM fusion for RNN-
T with streaming constraints, where shallow fusion remains
the most popular and effective technique [13,17,18]. A recent
study [11] tried pre-training the prediction network of RNN-T
with unpaired text, but did not get any WER improvement.

In this work, we explore NNLM fusion methods for
RNN-T that are applied on-the-fly during first pass decoding,
thus avoiding additional algorithmic latency and keeping the
model latency low. We propose extensions to the original
cold NNLM fusion to increase its flexibility and effectiveness
within the RNN-T framework. Our combined cold and shal-
low NNLM fusion method achieves 13-18% relative WER
improvement on the widely used Librispeech dataset over
our strong baselines. In addition, our method allows for
flexible plug-and-play of different NNLMs without the need
for re-training, which could be very useful for rapid domain
adaptation and dynamically adjusting to resource constraints.
Lastly, we provide in-depth analysis to better understand the
benefits of the different NNLM fusion methods.

2. NNLM FUSION FOR RNN-T

2.1. RNN-T Overview

RNN-T [1] consists of three major sub-networks: encoder,
predictor, and joiner. The encoder transforms an input se-
quence of audio feature vectors x = (x1, . . . , xT ) into a se-
quence of acoustic embeddings henc:

henc = fenc(x) = (henc1 , . . . , hencT ′ ) (1)

where T ′ may be different from T . The predictor, which is
analogous to an LM, transforms a sequence of previous to-
kens (y1, . . . , yu−1) into an embedding vector hpredu :

hpredu = fpred(y1, . . . , yu−1) (2)

Finally, the joiner combines the encoder embedding henct and
predictor embedding hpredu to estimate the logits zt,u:
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zt,u = f join(henct , hpredu ) (3)

P (.|x1, . . . , xt, y1, . . . , yu−1) = softmax(zt,u) (4)

Additional details on the RNN-T training objective and
decoding procedure can be found in [1].

2.2. Shallow Fusion

Shallow fusion is the most popular technique for combining
RNN-T with an external NNLM trained on text-only data
[13]. In shallow fusion, the NNLM is incorporated via log-
linear interpolation at inference time, and the decoding prob-
lem of finding the best hypothesis y∗ becomes:

y∗ = argmax
y

logPRNNT(y|x) + λ logPLM (y) (5)

where λ is a hyperparameter that controls the relative impor-
tance of the external NNLM (λ = 0 corresponds to normal
RNN-T decoding without shallow fusion). Note that unlike
encoder-decoder models, we cannot directly interpolate the
log probability of RNN-T’s joiner output and NNLM output
at each output time step because RNN-T allows emission of
blank symbols which are not modeled in external NNLMs.
In our implementation, we interpolate external NNLM scores
with RNN-T scores during beam search when the model out-
puts a non-blank output symbol. This interpolation happens
on-the-fly and the overall system remains streamable.

2.3. Cold Fusion

One limitation of shallow fusion is that the external NNLM
is only applied during inference. Cold fusion [12, 14] is
a method originally proposed for encoder-decoder models
where a pre-trained external NNLM is fused directly into
the decoder network by combining their hidden states during
training time. Similar to the decoder network of encoder-
decoder models, the prediction network of RNN-T is analo-
gous to an LM. Our proposed cold fusion method for RNN-T
extends Equation (2) to combine the predictor embedding and
NNLM output as follows:

sLM
u = softmax(zLM

u ) (6)

hLM
u = fLM (sLM

u ) (7)

gu = sigmoid(Wg[h
pred
u ;hLM

u ] + bg) (8)

hCF
u = fCF (gu � [hpredu ;hLM

u ]) (9)

where zLM
u is the external NNLM’s predicted logits over non-

blank output symbols for the next time step given a sequence
of previously emitted tokens (y1, . . . , yu−1), fLM is the LM
projection network, and fCF is the combined projection net-
work. The final embedding hCF

u has the same dimension as
hpredu and replaces the latter in Equation (3).

Some of the key differences between our cold fusion ap-
proach and the original cold fusion formulation are:

1. We adopt an iterative training procedure instead of
training the network from scratch. This means the
RNN-T and NNLM are first pre-trained separately; the
cold fusion RNN-T is then finetuned with the frozen
NNLM for a few epochs. We will show in Section 4.2
that this technique is crucial for cold fusion to work.

2. We use the NNLM’s logits zLM
u instead of its hidden

state. This allows us to swap in a different NNLM dur-
ing inference without re-training the whole network.
Example scenarios where this ability could be useful
are switching to a lightweight NNLM where computa-
tion power is limited, or plugging in a domain-specific
NNLM for improved accuracy. We will showcase this
flexibility in Section 4.3.

3. We apply a fine gating mechanism on top of the con-
catenated predictor and NNLM output, as shown in
Equation (8) and (9). This gating mechanism can in-
crease the predictor network’s modeling power by us-
ing multiplicative interaction [19], together with addi-
tional linguistic information from the external NNLM.

With cold fusion, the system remains streamable since
NNLM scores are combined on-the-fly in first pass decoding.

3. EXPERIMENTS

Data: We conduct experiments on the widely used Lib-
rispeech [22] dataset which consists of 960 hours of labeled
speech and an additional text-only corpus containing 810M
words. We use 80-dim globally z-normalized logMel filter-
bank coefficients as acoustic features, derived from 25ms FFT
windows with a 10ms frame shift. We apply the Librispeech
Double policy without time warping from SpecAugment [23]
during training. We also perform speed perturbation [24] of
the training data and produce three versions of each audio
with speed factors 0.9, 1.0, and 1.1; as a result, the training
data size is tripled. The output targets are 5000 unigram
WordPieces [25] generated by the SentencePiece toolkit [26],
plus an additional blank symbol.

RNN-T Encoder: We consider two of the most popu-
lar streaming encoder architectures for RNN-T, Long-Short
Term Memory (LSTM) and Latency Controlled Bidirectional
LSTM (LC-BLSTM) [27] as our baselines in this work. The
LSTM encoder stacks 11 contiguous feature frames as in-
put, consists of eight layers with 1024 cells each, and has
a 640-dim linear projection after every LSTM layer. The
LC-BLSTM encoder works on single feature frames without
stacking, has 24-frame lookahead (i.e., 240ms), 120-frame
chunk size, and comprises eight layers with 640 cells each.
Both encoders subsample the input by a factor of four and
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Encoder Arch. Params Lookahead LM Fusion test-clean test-other

BLSTM [20] ∼126M inf (non-streaming) None 3.2 7.8

Transformer [21] 139M 30ms (feature stacking) None 4.2 11.3
∼1.1s (2 frames/layer) 3.0 7.7

LSTM (ours) 65M 100ms (feature stacking)

None 4.0 10.1
SF 3.3 8.6
CF 3.8 9.4

SF+CF 3.3 8.3

LC-BLSTM (ours) 99M 240ms (right context)

None 3.2 8.0
SF 2.8 7.0
CF 3.0 7.6

SF+CF 2.8 6.8

Table 1: Librispeech WER comparison between vanilla RNN-T baselines, shallow fusion (SF), cold fusion (CF), combined
fusion (SF+CF), and relevant published results using sequence transducers.

produce 1024-dim embeddings. In both networks, the predic-
tor contains two LSTM layers with 512 cells each, and the
joiner has a single linear layer. The total trainable parameters
are 65M (LSTM) and 99M (LC-BLSTM). We train the mod-
els for 80 epochs using Adam [28]; the learning rate is fixed
at 0.0004 for the first 60 epochs, then drops by a factor of 0.8
after every subsequent epoch.

External NNLM: We employ a 4-layer LSTM network
with 2048 cells in each layer, interleaved with 640-dim lin-
ear projection, totaling 53M trainable parameters. We train
the model on the 810M text-only corpus (broken down into
WordPieces) with Cross Entropy loss for 40 epochs using the
Adam optimizer [28]. The learning rate is fixed at 0.0004 for
the first 25 epochs, then drops by a factor of 0.8 after every
subsequent epoch. This NNLM will be the basis for our shal-
low fusion and cold fusion experiments.

Cold Fusion: The LM projection network fLM contains
a 256-dim bottleneck layer, followed by linear projection into
1024 dimensions. The combined projection network fCF

consists of a single 1024-dim linear projection layer. These
cold fusion-specific components add 7.8M trainable parame-
ters in total. We freeze the NNLM parameters, bootstrap the
RNN-T from baseline models, and finetune the network for
10 epochs with a 0.0005 learning rate for the first 3 epochs,
then decays by a factor of 0.6 after every epoch. For fair com-
parison, we also tried finetuning the baseline models for 10
more epochs, but did not obtain better results.

Decoding: We use a beam size of 15 for all experiments.
The shallow fusion interpolation weight λ ranges between 0.2
and 0.5 based on tuning results on development sets. The op-
timal λ is smaller when cold fusion is combined with shallow
fusion, likely because the NNLM scores are already implicit
within the cold fusion RNN-T scores. Furthermore, we can
reuse the NNLM logits for both fusion methods, thus incur-
ring minimal computational overhead when combining them.

4. RESULTS AND DISCUSSION

4.1. WER Overview

Table 1 shows the WER results of our proposed approaches,
together with some relevant baselines from published works
that also utilized sequence transducers. The main motivation
for including these published results is to demonstrate that our
baseline model’s numbers are very competitive. We are not
aiming to outperform the Librispeech state-of-the-art in this
paper, which typically entails using non-streamable encoder
architectures (e.g., full-context transformer) as well as second
pass rescoring on full utterances, whereas the focus of our
work is on streaming first-pass decoding.

Both shallow fusion (SF) and cold fusion (CF) signifi-
cantly improve over the vanilla baselines, with SF giving bet-
ter results than CF. It is unclear why CF underperforms com-
pared to SF, even though the NNLM is incorporated directly
in training. We hypothesize that SF is able to distribute the
probability mass more evenly to different WordPieces via di-
rect interpolation, whereas the spiky nature of RNN-T scores
limits the impact of CF. We will verify this hypothesis in fu-
ture work. Combining SF and CF results in further improve-
ment on the more challenging test-other split, producing
an overall WER reduction of 13-18% over the baselines.

4.2. Importance of Iterative Training

Table 2 shows that training cold fusion RNN-T from scratch
fails to yield WER improvement; we also observed that the
model has difficulties converging, especially with an LSTM
encoder. It is therefore crucial to adopt the iterative train-
ing approach, i.e., bootstrapping from a well-trained RNN-T
model. We hypothesize that the strong signal from the exter-
nal NNLM makes the model rely less on RNN-T, thus the lat-
ter becomes under-trained. Conversely, most parts of the net-
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Model test-clean test-other

LSTM CF (from scratch) Did Not Converge
LSTM CF (iterative) 3.8 9.4

LC-BLSTM CF (from scratch) 3.2 8.4
LC-BLSTM CF (iterative) 3.0 7.6

Table 2: Effect of iterative training on cold fusion (CF).

Model test-clean test-other

LSTM CF (15M LM) 4.0 9.7
LSTM CF (53M LM) 3.8 9.4

+ swap 15M LM 3.9 9.6
+ swap 15M oracle LM 2.2 5.8

LC-BLSTM CF (15M LM) 3.1 7.8
LC-BLSTM CF (53M LM) 3.0 7.6

+ swap 15M LM 3.1 7.8
+ swap 15M oracle LM 1.9 4.9

Table 3: Swapping NNLM in cold fusion without re-training.

work are already well-trained in the iterative scenario (only
a few linear layers for cold fusion need to be trained from
scratch), and the finetuning process mainly teaches the model
how to integrate the available signals.

4.3. Flexible NNLM Swapping

The use of NNLM’s logits zLM
u allows for flexible plug-and-

play of different NNLMs during inference without re-training
the whole network. This flexibility can be useful in many sce-
narios. For example, we only have to train the model once and
simply plug in different NNLMs for different devices or sur-
faces depending on their resource constraints. Table 3 shows
an example where we swap out the original NNLM (53M pa-
rameters) with a lightweight version (15M parameters). The
swapped-in LM works out of the box and gives similar results
as using it directly in cold fusion training.

In cases where we have strong apriori knowledge about
the input audio, such as domain information, we could plug in
a domain-specific NNLM to obtain better recognition results.
Table 3 illustrates this ability where we swap out the original
53M NNLM with an oracle 15M NNLM trained on the com-
bined test-clean and test-other splits, resulting in
massive WER reduction.

4.4. When Does NNLM Fusion Help?

We first analyze WER improvement as a function of utterance
length. We split utterances in the evaluation set into three
chunks: Short, Medium, and Long. Each chunk represents a
third of the utterances in the evaluation set, containing around

SF CF SF+CF

Average Length
Short (8 words) 6.7% 3.5% 9.5%

Medium (16 words) 14.3% 6.7% 17.2%
Long (34 words) 18.7% 7.2% 20.7%

Word Type (# Utts)
Common (3.8K) 17.4% 7.9% 20.2%

Fixed by LM (1.5K) 14.3% 5.4% 16.5%
Rare/OOV (332) 9.1% 3.8% 11.0%

Table 4: Breakdown of relative WER reduction of shallow
fusion (SF), cold fusion (CF), and combined fusion (SF+CF)
compared to vanilla baselines. Analysis is done on LSTM’s
test-clean and test-other results.

1.85K utterances. As shown in Table 4 (first section), the im-
provement provided by all fusion methods increases as the
utterance becomes longer. This implies that NNLMs can bet-
ter model long-range linguistic information and compensate
for the known weakness of RNN-T’s prediction network [11].

Next we analyze the relation between the rare/out-of-
vocabulary (OOV) word issue and NNLM fusion improve-
ment. We define rare/OOV word as a word that appears
less than 10 times in the acoustic training transcription.
We split utterances in the evaluation set into three chunks:
(1) Common - utterances that have no rare/OOV word, (2)
Fixed by LM - utterances that had rare/OOV word, but
the issue was fixed if we include LM unpaired text data,
and (3) Rare/OOV - utterances that still have at least one
rare/OOV word after including LM unpaired text data. As
shown in Table 4 (second section), the improvement provided
by NNLM fusion increases when the unpaired text data are
able to mitigate the rare/OOV word issue. This suggests that
the increased coverage of the unpaired text corpus plays a
crucial role in NNLM fusion’s effectiveness.

5. CONCLUSION AND FUTURE WORK

In this work, we proposed external NNLM fusion methods
for RNN-T models capable of leveraging unpaired text data
in both training and decoding. Our methods are applied on-
the-fly during first pass decoding, thus do not adversely im-
pact algorithmic latency and the models remain streamable.
Moreover, we showed that iterative training is crucial for get-
ting cold fusion to work and we can obtain complementary
benefits from combining both shallow and cold fusion.

For future work, we plan to investigate ways to close the
gap between cold fusion and shallow fusion, compare our first
pass fusion methods with second pass LM rescoring, and fur-
ther leverage the flexibility of NNLM swapping in cold fusion
and apply it to on-the-fly domain adaptation.
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