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Abstract

Pronunciation lexicons and prediction models
are a key component in several speech synthe-
sis and recognition systems. We know that
morphologically related words typically fol-
low a fixed pattern of pronunciation which can
be described by language-specific paradigms.
In this work we explore how deep recurrent
neural networks can be used to automatically
learn and exploit this pattern to improve the
pronunciation prediction quality of words re-
lated by morphological inflection. We propose
two novel approaches for supplying morpho-
logical information, using the word’s morpho-
logical class and its lemma, which are typi-
cally annotated in standard lexicons. We re-
port improvements across a number of Euro-
pean languages with varying degrees of phono-
logical and morphological complexity, and
two language families, with greater improve-
ments for languages where the pronunciation
prediction task is inherently more challenging.
We also observe that combining bidirectional
LSTM networks with attention mechanisms is
an effective neural approach for the computa-
tional problem considered, across languages.
Our approach seems particularly beneficial in
the low resource setting, both by itself and in
conjunction with transfer learning.

1 Introduction

Morphophonology is the study of interaction be-
tween morphological and phonological processes
and mostly involves description of sound changes
that take place in morphemes (minimal meaningful
units) when they combine to form words. For ex-
ample, the plural morpheme in English appears as
‘-s’ or ‘-es’ in orthography and as [s], [z], and [Iz]

?Part of the work was done when D.S., N.C. and A.B.
were at Google.

in phonology, e.g. in cops, cogs and courses. The
different forms can be thought to be derived from a
common plural morphophoneme which undergoes
context dependent transformations to produce the
correct phones.

A pronunciation model, also known as a
grapheme to phoneme (G2P) converter, is a sys-
tem that produces a phonemic representation of a
word from its written form. The word is converted
from the sequence of letters in the orthographic
script to a sequence of phonemes (sound symbols)
in a pre-determined transcription, such as IPA or
X-SAMPA. It is expensive and possibly, say in
morphologically rich languages with productive
compounding, infeasible to list the pronunciations
for all the words. So one uses rules or learned mod-
els for this task. Pronunciation models are impor-
tant components of both speech recognition (ASR)
and synthesis (text-to-speech, TTS) systems. Even
though end-to-end models have been gathering re-
cent attention (Graves and Jaitly, 2014; Sotelo et al.,
2017), often state-of-the-art models in industrial
production systems involve conversion to and from
an intermediate phoneme layer.

A single system of morphophonological rules
which connects morphology with phonology is
well-known (Chomsky and Halle, 1968). In fact
computational models for morphology such as the
two-level morphology of Koskenniemi (1983); Ka-
plan and Kay (1994) have the bulk of the machinery
designed to handle phonological rules. However,
the approach involves encoding language-specific
rules as a finite-state transducer, a tedious and ex-
pensive process requiring linguistic expertise. Lin-
guistic rules are augmented computationally for
small corpora in Ermolaeva (2018), although scala-
bility and applicability of the approach across lan-
guages is not tested.

We focus on using deep neural models to im-
prove the quality of pronunciation prediction using
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morphology. G2P fits nicely in the well-studied se-
quence to sequence learning paradigms (Sutskever
et al., 2014), here we use extensions that can handle
supplementary inputs in order to inject the morpho-
logical information. Our techniques are similar to
Sharma et al. (2019), although the goal there is to
lemmatize or inflect more accurately using pronun-
ciations. Taylor and Richmond (2020) consider
improving neural G2P quality using morphology,
our work differs in two respects. First, we use
morphology class and lemma entries instead of
morpheme boundaries for which annotations may
not be as readily available. Secondly, they con-
sider BiLSTMs and Transformer models, but we
additionally consider architectures which combine
BiLSTMs with attention and outperform both. We
also show significant gains by morphology injec-
tion in the context of transfer learning for low re-
source languages where sufficient annotations are
unavailable.

2 Background and related work

Pronunciation prediction is often studied in settings
of speech recognition and synthesis. Some recent
work explores new representations (Livescu et al.,
2016; Sofroniev and Çöltekin, 2018; Jacobs and
Mailhot, 2019), but in this work, a pronunciation
is a sequence of phonemes, syllable boundaries
and stress symbols (van Esch et al., 2016). A lot of
work has been devoted to the G2P problem (e.g. see
Nicolai et al. (2020)), ranging from those focused
on accuracy and model size to those discussing ap-
proaches for data-efficient scaling to low resource
languages or multilingual modeling (Rao et al.,
2015; Sharma, 2018; Gorman et al., 2020).

Morphology prediction is of independent interest
and has applications in natural language generation
as well as understanding. The problems of lemma-
tization and morphological inflection have been
studied in both contextual (in a sentence, which
involves morphosyntactics) and isolated settings
(Cohen and Smith, 2007; Faruqui et al., 2015; Cot-
terell et al., 2016; Sharma et al., 2019).

Morphophonological prediction, by which we
mean viewing morphology and pronunciation pre-
diction as a single task with several related inputs
and outputs, has received relatively less attention as
a language-independent computational task, even
though the significance for G2P has been argued
(Coker et al., 1991). Sharma et al. (2019) show
improved morphology prediction using phonology,

and Taylor and Richmond (2020) show the reverse.
The present work aligns with the latter, but instead
of requiring full morphological segmentation of
words we work with weaker and more easily anno-
tated morphological information like word lemmas
and morphological categories.

3 Improved pronunciation prediction

We consider the G2P problem, i.e. prediction of
the sequence of phonemes (pronunciation) from
the sequence of graphemes in a single word. The
G2P problem forms a clean, simple application of
seq2seq learning, which can also be used to cre-
ate models that achieve state-of-the-art accuracies
in pronunciation prediction. Morphology can aid
this prediction in several ways. One, we could
use morphological category as a non-sequential
side input. Two, we could use the knowledge of
the morphemes of the words and their pronuncia-
tions which may be possible with lower amounts
of annotation. For example, the lemma (and its
pronunciation) may already be annotated for an
out-of-vocabulary word. Often standard lexicons
list the lemmata of derived/inflected words, lemma-
tizer models can be used as a fallback. Learning
from the exact morphological segmentation (Tay-
lor and Richmond, 2020) would need more precise
models and annotation (Demberg et al., 2007).

Given the spelling, language specific models
can predict the pronunciation by using knowledge
of typical grapheme to phoneme mappings in the
language. Some errors of these models may be
fixed with help from morphological information as
argued above. For instance, homograph pronun-
ciations can be predicted using morphology but
it is impossible to deduce correctly using just or-
thography.1 The pronunciation of ‘read’ (/ôi:d/ for
present tense and noun, /ôEd/ for past and partici-
ple) can be determined by the part of speech and
tense; the stress shifts from first to second syllable
between ‘project’ noun and verb.

3.1 Dataset

We train and evaluate our models for five lan-
guages to cover some morphophonological diver-
sity: (American) English, French, Russian, Span-
ish and Hungarian. For training our models, we
use pronunciation lexicons (word-pronunciation
pairs) and morphological lexicons (containing lex-

1Homographs are words which are spelt identically but
have different meanings and pronunciations.
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ical form, i.e. lemma and morphology class) of
only inflected words of size of the order of 104

for each language (see Table 5 in Appendix A).
For the languages discussed, these lexicons are ob-
tained by scraping2 Wiktionary data and filtering
for words that have annotations (including pronun-
ciations available in the IPA format) for both the
surface form and the lexical form. While this or-
der of data is often available for high-resource lan-
guages, in Section 3.3 we discuss extension of our
work to low-resource settings using Finnish and
Portuguese for illustration where the Wiktionary
data is about an order of magnitude smaller.

Word (language) Morph. Class Pron. LS LP
masseuses (fr) n-f-pl /ma.søz/ masseur /ma.sœK/

fagylaltozom (hu) v-fp-s-in-pr-id /"f6Íl6ltozom/ fagylaltozik /"f6Íl6ltozik/

Table 1: Example annotated entries. (v-fp-s-in-pr-id:
Verb, first-person singular indicative present indefinite)

We keep 20% of the pronunciation lexicons
aside for evaluation using word error rate (WER)
metric. WER measures an output as correct if the
entire output pronunciation sequence matches the
ground truth annotation for the test example.

3.1.1 Morphological category

The morphological category of the word is ap-
pended as an ordinal encoding to the spelling, sepa-
rated by a special character. That is, the categories
of a given language are appended as unique inte-
gers, as opposed to one-hot vectors which may be
too large in morphologically rich languages.

3.1.2 Lemma spelling and pronounciation

Information about the lemma is given to the mod-
els by appending both, the lemma pronouncia-
tion 〈LP〉 and lemma spelling 〈LS〉 to the word
spelling 〈WS〉, all separated by special characters,
like, 〈WS〉§〈LP〉¶〈LS〉. Lemma spelling can po-
tentially help in irregular cases, for example ‘be’
has past forms ‘gone’ and ‘were’, so the model
can reject the lemma pronunciation in this case by
noting that the lemma spellings are different (but
potentially still use it for ‘been’).

3.2 Model details

The models described below are implemented in
OpenNMT (Klein et al., 2017).

2kaikki.org/dictionary/

3.2.1 Bidirectional LSTM networks
LSTM (Hochreiter and Schmidhuber, 1997) allows
learning of fixed length sequences, which is not a
major problem for pronunciation prediction since
grapheme and phoneme sequences (represented as
one-hot vectors) are often of comparable length,
and in fact state-of-the-art accuracies can be ob-
tained using bidirectional LSTM (Rao et al., 2015).
We use single layer BiLSTM encoder - decoder
with 256 units and 0.2 dropout to build a charac-
ter level RNN. Each character is represented by a
trainable embedding of dimension 30.

3.2.2 LSTM based encoder-decoder networks
with attention (BiLSTM+Attn)

Attention-based models (Vaswani et al., 2017;
Chan et al., 2016; Luong et al., 2015; Xu et al.,
2015) are capable of taking a weighted sample of
input, allowing the network to focus on different
possibly distant relevant segments of the input ef-
fectively to predict the output. We use the model
defined in Section 3.2.1 with Luong attention (Lu-
ong et al., 2015).

3.2.3 Transformer networks
Transformer (Vaswani et al., 2017) uses self-
attention in both encoder and decoder to learn
rich text representaions. We use a similar architec-
ture but with fewer parameters, by using 3 layers,
256 hidden units, 4 attention heads and 1024 di-
mensional feed forward layers with relu activation.
Both the attention and feedforward dropout is 0.1.
The input character embedding dimension is 30.

3.3 Transfer learning for low resource G2P

Both non-neural and neural approaches have been
studied for transfer learning (Weiss et al., 2016)
from a high-resource language for low resource
language G2P setting using a variety of strategies
including semi-automated bootstrapping, using
acoustic data, designing representations suitable
for neural learning, active learning, data augmen-
tation and multilingual modeling (Maskey et al.,
2004; Davel and Martirosian, 2009; Jyothi and
Hasegawa-Johnson, 2017; Sharma, 2018; Ryan and
Hulden, 2020; Peters et al., 2017; Gorman et al.,
2020). Recently, transformer-based architectures
have also been used for this task (Engelhart et al.,
2021). Here we apply a similar approach of us-
ing representations learned from the high-resource
languages as an additional input for low-resource
models but for our BiLSTM+Attn architecture. We
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Model Inputs en fr ru es hu
BiLSTM (b/+c/+l) (39.7/39.4/37.1) (8.69/8.94/7.94) (5.26/4.87/5.60) (1.13/1.44/1.30) (6.96/5.85/7.21)
BiLSTM+Attn (b/+c/+l) (36.9/36.1/31.0) (4.45/4.20/4.12) (5.06/3.80/4.04) (0.32/0.32/0.29) (1.78/1.31/1.12)
Transformer (b/+c/+l) (40.2/39.3/37.7) (8.19/7.11/10.6) (6.57/6.38/5.36) (2.29/1.62/2.20) (8.20/4.93/8.11)

Table 2: Models and their Word Error Rates (WERs). ‘b’ corresponds to baseline (vanilla G2P), ‘+c’ refers to
morphology class injection (Sec. 3.1.1) and ‘+l’ to addition of lemma spelling and pronunciation (Sec. 3.1.2).

evaluate our model for two language pairs — hu
(high) - fi (low) and es (high) and pt (low) (results
in Table 3). We perform morphology injection us-
ing lemma spelling and pronunciation (Sec. 3.1.2)
since it can be easier to annotate and potentially
more effective (per Table 2). fi and pt are not really
low-resource, but have relatively fewer Wiktionary
annotations for the lexical forms (Table 5).

Model fi fi+hu pt pt+es
BiLSTM+Attn (base) 18.53 9.81 62.65 58.87
BiLSTM+Attn (+lem) 9.27 8.45 59.63 55.48

Table 3: Transfer learning for vanilla G2P (base) and
morphology augmented G2P (+lem, Sec. 3.1.2).

4 Discussion

We discuss our results under two themes — the
efficacy of the different neural models we have
implemented, and the effect of the different ways
of injecting morphology that were considered.

We consider three neural models as described
above. To compare the neural models, we first
note the approximate number of parameters of each
model that we trained:

• BiLSTM: ∼1.7M parameters,
• BiLSTM+Attn: ∼3.5M parameters,
• Transformer: ∼5.2M parameters.

For BiLSTM and BiLSTM+Attn, the parameter
size is based on neural architecture search i.e. we
estimated sizes at which accuracies (nearly) peaked.
For transformer, we believe even larger models can
be more effective and the current size was chosen
due to computational restrictions and for “fairer”
comparison of model effectiveness. Under this set-
ting, BiLSTM+Attn models seem to clearly outper-
form both the other models, even without morphol-
ogy injection (cf. Gorman et al. (2020), albeit it is
in the multilingual modeling context). Transformer
can beat BiLSTM in some cases even with the sub-
optimal model size restriction, but is consistently
worse when the sequence lengths are larger which
is the case when we inject lemma spellings and
pronunciations.

We also look at how adding lexical form infor-
mation, i.e. morphological class and lemma, helps
with pronunciation prediction. We notice that the
improvements are particularly prominent when the
G2P task itself is more complex, for example in
English. In particular, ambiguous or exceptional
grapheme subsequence (e.g. ough in English)
to phoneme subsequence mappings, may be re-
solved with help from lemma pronunciations. Also
morphological category seems to help for example
in Russian where it can contain a lot of informa-
tion due to the inherent morphological complexity
(about 25% relative error reduction). See Appendix
B for more detailed comparison and error analysis
for the models.

Our transfer learning experiments indicate that
morphology injection gives even more gains in low
resource setting. In fact for both the languages
considered, adding morphology gives almost as
much gain as adding a high resource language to
the BiLSTM+Attn model. This could be useful for
low resource languages like Georgian where a high
resource language from the same language family
is unavailable. Even with the high resource aug-
mentation, using morphology can give a significant
further boost to the prediction accuracy.

5 Conclusion

We note that combining BiLSTM with attention
seems to be the most attractive alternative in get-
ting improvements in pronunciation prediction by
leveraging morphology, and hence correspond to
the most appropriate ‘model bias’ for the prob-
lem from among the alternatives considered. We
also note that all the neural network paradigms
discussed are capable of improving the G2P predic-
tion quality when augmented with morphological
information. Since our approach can potentially
support partial/incomplete data (using appropriate
〈MISSING〉 or 〈N/A〉 tokens), one can use a sin-
gle model which injects morphology class and/or
lemma pronunciation as available. For languages
where neither is available, our results suggest build-
ing word-lemma lists or utilizing effective lemma-
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tizers (Faruqui et al., 2015; Cotterell et al., 2016).

6 Future work

Our work only leverages the inflectional morphol-
ogy paradigms for better pronunciation prediction.
However in addition to inflection, morphology also
results in word formation via derivation and com-
pounding. Unlike inflection, derivation and com-
pounding could involve multiple root words, so
an extension would need a generalization of the
above approach along with appropriate data. An
alternative would be to learn these in an unsuper-
vised way using a dictionary augmented neural net-
work which can efficiently refer to pronunciations
in a dictionary and use them to predict pronunci-
ations of polymorphemic words using pronuncia-
tions of the base words (Bruguier et al., 2018). It
would be interesting to see if using a combination
of morphological side information and dictionary-
augmentation results in a further accuracy boost.
Developing non-neural approaches for the mor-
phology injection could be interesting, although
as noted before, the neural approaches are the state-
of-the-art (Rao et al., 2015; Gorman et al., 2020).

One interesting application of the present work
would be to use the more accurate pronunciation
prediction for morphologically related forms for ef-
ficient pronunciation lexicon development (useful
for low resource languages where high-coverage
lexicons currently don’t exist), for example anno-
tating the lemma pronunciation should be enough
and the pronunciation of all the related forms can
be predicted with high accuracy. This is hugely
beneficial for languages where there are hundreds
or even thousands of surface forms associated with
the same lemma. Another concern for reliably us-
ing the neural approaches is explainability (Molnar,
2019). Some recent research looks at explaining
neural models with orthographic and phonological
features (Sahai and Sharma, 2021), an extension
for morphological features should be useful.
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Model Inputs en de es ru avg. rel. gain
BiLSTM (b/+c/+l) (31.0/30.5/25.2) (17.7/15.5/12.3) (8.1/7.9/6.7) (18.4/15.6/15.9) (-/+7.9%/+20.0%)
BiLSTM+Attn (b/+c/+l) (29.0/27.1/21.3) (12.0/11.6/11.6) (4.9/2.6/2.4) (14.1/13.6/13.1) (-/+15.1%/+22.0%)

Table 4: Number of total Wiktionary entries, and inflected entries with pronunciation and morphology annotations,
for the languages considered.

Appendix

A On size of data

We record the size of data scraped from Wiktionary
in Table 5. There is marked inconsistency in the
number of annotated inflected words where the pro-
nunciation transcription is available, as a fraction of
the total vocabulary, for the languages considered.

In the main paper, we have discussed results
on the publicly available Wiktionary dataset. We
perform more experiments on a larger dataset (105-
106 examples of annotated inflections per language)
using the same data format and methodology for
(American) English, German, Spanish and Russian
(Table 4). We get very similar observations in this
regime as well in terms of relative gains in model
performances using our techniques, but these re-
sults are likely more representative of word error
rates for the whole languages.

Language Total senses Annotated inflections
en 1.25M 7543
es 0.93M 28495
fi 0.24M 3663
fr 0.46M 24062
hu 77.7K 31486
pt 0.39M 2647
ru 0.47M 20558

Table 5: Number of total Wiktionary entries, and in-
flected entries with pronunciation and morphology an-
notations, for the languages considered.

B Error analysis

Neural sequence to sequence models, while highly
accurate on average, make “silly” mistakes like
omitting or inserting a phoneme which are hard
to explain. With that caveat in place, there are
still reasonable patterns to be gleaned when com-
paring the outputs of the various neural models
discussed here. BiLSTM+Attn model seems to not
only be making fewer of these “silly” mistakes,
but also appears to be better at learning the gen-
uinely more challenging predictions. For exam-
ple, the French word pédagogiques (‘pedagogical’,

plural) /pe.da.gO.Zik/ is pronounced correctly by
BiLSTM+Attn, but as /pe.da.ZO.Zik/ by BiLSTM.
Similarly BiLSTM+Attn predicts /"dZæmIN/, while
Transformer network says /"dZamIN/ for jamming
(en). We note that errors for Spanish often involve
incorrect stress assignment since the grapheme-to-
phoneme mapping is highly consistent.

Adding morphological class information seems
to reduce the error in endings for morphologically
rich languages, which can be an important source
of error if there is relative scarcity of transcrip-
tions available for the inflected words. For exam-
ple, for our BiLSTM+Attn model, the pronunci-
ation for фуррем (ru, ‘furry’ instrumental singu-
lar noun) is fixed from /"furj:em/ to /"furj:Im/, and
koronavı́rusról (hu, ‘coronavirus’ delative singu-
lar) gets corrected from /"koron6vi:ruSo:l/ to /"ko-
ron6vi:ruSro:l/. On the other hand, adding lemma
pronunciation usually helps with pronouncing the
root morpheme correctly. Without the lemma in-
jection, our BiLSTM+Attn model mispronounces
debriefing (en) as /dI"bôi:fIN/ and sentences (en)
as /sEn"tEnsIz/. Based on these observations, it
sounds interesting to try to inject both categorical
and lemma information simultaneously.


