
Partial Rewriting for Multi-Stage ASR

Antoine Bruguier, David Qiu, Yanzhang He
Google LLC, USA

{tonybruguier,qdavid,yanzhanghe}@google.com

Abstract

For many streaming automatic speech recognition tasks, it is impor-
tant to provide timely intermediate streaming results, while refining a
high quality final result. This can be done using a multi-stage architec-
ture, where a small left-context only model creates streaming results and
a larger left- and right-context model produces a final result at the end.
While this significantly improves the quality of the final results without
compromising the streaming emission latency of the system, streaming
results do not benefit from the quality improvements. Here, we propose
using a text manipulation algorithm that merges the streaming outputs of
both models. We improve the quality of streaming results by around 10%,
without altering the final results. Our approach introduces no additional
latency and reduces flickering. It is also lightweight, does not require re-
training the model, and it can be applied to a wide variety of multi-stage
architectures.

1 Introduction

Streaming automatic speech recognition (ASR) processes the audio as it is being
spoken, without waiting for the entire utterance to be finished before generating
a transcript. The intermediate results are called partial results, while the single
result produced at the end of the utterance is called a final result. This is in
contrast to batch ASR which waits until the entire utterance is spoken before
generating only a final result. Streaming ASR is useful in applications where
it is important to provide feedback to the user as soon as possible, such as
voice-activated assistants, dictation, or live video captioning.

The first streaming ASR systems were developed several decades ago Yu and
Deng [2015], Hinton et al. [2012], Brown et al. [1982], Selfridge et al. [2011], Fink
et al. [1998], Saraclar et al. [2002], but more recently new approaches relying
on end-to-end models Li et al. [2019], Yeh et al. [2019], Sainath et al. [2020],
He et al. [2019] have been developed. However, batch ASR usually outperforms
streaming ASR because it can better understand the context of the speech and
therefore make more accurate predictions.

1

ar
X

iv
:2

31
2.

09
46

3v
1

 [
cs

.C
L

]
 8

 D
ec

 2
02

3

Cascaded recognizers Narayanan et al. [2021], Sainath et al. [2021] attempt
to have the best of both worlds by combining the strengths of both streaming
and batch ASR systems. They do so by using two models. A causal model
only uses the left context outputs and therefore has low latency. A cascaded
model with both left and right contexts looks ahead in the audio to output
results and therefore has better accuracy. The cascaded model is also more
accurate because it has more weights than the causal one. While both models
can generate partial and final results, typically only the causal model is used
to generate the partial results so that the latency is low, and only the cascaded
model is used to generate the final result so that it is more accurate Sainath
et al. [2022]. This approach enables low-latency streaming ASR while achieving
a high quality for the final results. However, this leaves a gap in quality because
the partial results still have relatively lower quality.

Further, running two models independently can cause issues because even
though the models decode the same audio and even share some of their weights,
there is no coupling between the two outputs and the partial results may oc-
casionally differ substantially from the final result. Recent improvements have
been able to tie in several models together Mahadeokar et al. [2022], Li et al.
[2023]. By running the two models together, they are able to improve the partial
results, but this comes at the cost of not having a right context for high-quality
final results. In essence, both models are causal, but one is still larger than
the other. Further, the two models now have to be run synchronously, and the
overall architecture is fixed at training time.

In parallel to these modelling efforts, there have been some improvements in
how partial results can be evaluated along three dimensions: flickering, partial
quality, and partial latency. Flickering occurs when words that have already
been decoded in a previous partial results are changed in subsequent partial
results. This negatively impacts the experience for the users Noble et al. [2022],
Muller et al. [2016] as well as potentially increasing the computation cost of
other systems (e.g. translation Iranzo-Sánchez et al. [2020] or assistants Chang
et al. [2020]). The amount of flickering can be measured using the metric defined
in Shangguan et al. [2020]. Work by Bruguier et al. [2022] defines metrics for
partial quality and latency. This allows us to measure improvements to partial
results along these three dimensions. We will describe the three metrics of
interest in more detail in section 2.3.

2 Goals and constraints

2.1 Overview

In the present work, we want to improve the quality of the partial results by
using a large model that has a right context, but we want to do so without
scarifying latency. Contrary to Narayanan et al. [2021], Sainath et al. [2021] we
no longer see partial results as a by-product of the decoding.

Instead, we want to keep two models running completely independently as

2

in Narayanan et al. [2021] and still allow the larger model to have a right context.
We also do not require a fixed architecture at training time. Our work will leave
the final results unchanged as they already benefit from the larger model and
the use of a right context, but it will improve the quality of partial results
significantly.

We want the approach to be cheap computationally. It should not increase
the memory budget in any measurable way, nor increase power consumption.

2.2 Combining results from two models

The only assumption we make is that we have two models that output a stream
of partial results. The results of the first model have low latency, but relatively
lower quality. The results from the second model have much higher latency, but
are of better quality. Like Narayanan et al. [2021], Sainath et al. [2021, 2022]
we want the best of both world, but this time for partial results without tying
in models architectures as done in Mahadeokar et al. [2022], Li et al. [2023] nor
require retraining.

In order to validate our approach experimentally, we modify how the cas-
caded architecture creates partials. While we still only use the cascaded model
to create final results, we now allow for both causal and cascaded model to cre-
ate partial results. Then, our proposed approach combines these two streams
of partial results into a single stream of new partial results that still have low
latency, but better quality. We do not rely on the specificity of the cascaded
architecture and only assume that we have two models running concurrently
and decoding the same audio. We only modify the partial results, and leave the
final results unchanged.

2.3 Metrics of interest

In order to measure the validity of our approach, we must be able to measure
the quality of our newly created partial results. For this we heavily rely on a
partial word error rate (PWER) metric defined in section 2.2 of Bruguier et al.
[2022]. Roughly speaking, PWER is the WER averaged over all the partials,
ignoring the missing words at the end of each partial.

The causal model outputs partial results with a very low latency, and we do
not wish to introduce any new latency. We thus rely on a metric that estimates
the latency of all partials, as defined in section 2.3 of Bruguier et al. [2022].
Roughly speaking, the partial latency (PL) metric is the average appearance
time of every correct word since the beginning of the utterance, where only the
change between experiments is the meaningful number.

Finally, an algorithm could increase the amount of flickering of the partial
results. In order to control for this potential negative change, we measure
the unstable partial word ratio (UPWR) as defined in Shangguan et al. [2020].
Roughly speaking, UPWR is the fraction of already decoded words in all the
partial results that are changed by a subsequent partial or final result. However,
in order to measure the effect of flickering more accurately, we expand the

3

definition of the metric by measuring UPWR on different set of results. If
the decoding of an utterance produces N partial results and 1 final result, we
measure UPWR on three different sets: 1) Only the N partial results, 2) Only
the single N th partial result and the final result, and 3) The N partial results
followed by the final result. This allows us to measure how much flickering
occurs during the streaming decoding, during the transition from streaming
decoding to final result, and overall, respectively.

3 Proposed algorithm

3.1 Intuition and core algorithm

The algorithm we propose relies on text manipulation only. We take as input
the two streams of partial results, one from the causal model and one from the
cascaded model, and then create a new stream of composite partial results.

ro za ee how are you

ro

sa

l

ie

how

0 1 2 3 4 5 6

1 0 1 2 3 4 5

2 1 1 2 3 4 5

3 2 2 2 3 4 5

4 3 3 3 3 4 5

5 4 4 4 3 4 5

C

I
S

S

C
D D

Figure 1: Example of Levenshtein alignment of two decoded sequences. The
vertical is the partial result from the cascaded model x[1, . . . ,m] with m = 5,
while the horizontal is the partial result from the causal model y[1, . . . , n] with
n = 6. The numbers correspond to the alignment cost C(i, j) and the arrows the
best path with C=correct, I=insertion, S=substitution, and D=deletion. The
algorithm finds j∗ = 4 that minimizes the cost of the last row, with C(m, j∗) =
3.

Consider the example where in the middle of decoding of an utterance, the
user has said “Rosalie how are you”. The causal model, being smaller and less
accurate, has incorrectly decoded it as “ ro za ee how are you” (n = 6
word pieces1), while the cascaded is more accurate but has a delay, and thus
has only decoded “ ro sa l ie how” (m = 5 word pieces) at the same frame.
As expected m < n since the cascaded model uses a right context, but it is not
true that the n−m = 1 word piece “ you” corresponds to amount of audio in the
right context. Indeed, if we were to naively copy the first m word pieces from
the cascaded model and then append the n−m = 1 last word pieces from the

1We use word-pieces Sainath et al. [2020] to decompose text into tokens even but the
approach can also use Unicode codepoints as tokens

4

causal model, we would get an incorrect transcript: “ ro sa l ie how you”
because the word “ are” is missing.

Algorithm 1 Streaming algorithm that recomposes results.
latest partial used for rewriting← ""
latest cascaded partial← ""
while AudioStillAvailable() do

partial result ← PullPartialResult()
if partial result.origin == CASCADED then

latest cascaded partial ← partial result.text
else

OutputPartial(RewriteResult(partial result.text))
end if

end while

Algorithm 2 Algorithm that attempts rewriting with a fall-back.
procedure RewriteResult(causal partial)

cost, composite ← CreateComposite(causal partial, latest cascaded partial)
if cost < cost threshold then

latest partial used for rewriting← latest cascaded partial
return composite

else
, composite ← CreateComposite(causal partial, latest partial used for rewriting)

return composite
end if

end procedure

Instead, we need a way to blend the two partial results correctly. Every
time we merge two partial results, we should correctly estimate how many extra
tokens to copy from the causal results.

We propose to use a Levenshein alignment Cormen et al. [2001] of the two
sequences, as shown in figure 1. By aligning the two sequences, we are able
to compute the alignment costs. We then modify the Levenshtein alignment
algorithm in a similar fashion as Bruguier et al. [2022] by allowing a variable
reference length. Since we want to consume the entire cascaded sequence, we
must have a final best alignment path on the last row (shown in a red box on
figure 1). However, we do not want to consume all the causal sequence because
it is likely to have more token due to the emission delay from the cascaded
model. In other words, the deletions due to the time delay should be ignored.
Thus, instead of using the bottom right cell as the end-path of our alignment, we
sweep all the costs on the bottom row and use the cell with the lowest cost. In
essence, the procedure allows us to discover how many causal tokens correspond
to the time delay. We are now able to create a composite transcript: First,
we copy all the tokens from the cascaded model, namely “ ro sa l ie how”.
Then, we append the remaining causal tokens, namely “ are you” to get a
composite transcript “ ro sa l ie how are you”.

Mathematically, if the cascaded transcript x has length m and the causal
transcript y has length n, then the Levenshtein algorithm will compute the
cost C(i, j) of aligning substrings x[1, . . . , i] and y[1, . . . , j] for i ∈ [1,m] and

5

j ∈ [1, n]. We then compute:

j∗ = argmin
j∈[1,n]

(C(m, j)) (1)

and the composite transcript is (where ⊕ is a string concatenation):

z ≜ x[1, . . . ,m]⊕ y[(j∗ + 1), . . . , n] (2)

3.2 Cropping partial results for non-quadratic growth

Because we run the algorithm on streaming audio, we must make sure it doesn’t
delay the appearance of results. Further, on device applications require a low
power consumption. One of the issue with the naive approach of section 3.1 is
that its run time is quadratic. For short audio segments, this is not a problem,
but when decoding longer duration segments, the cost can become prohibitive.

This can be alleviated by capping the length of the sequences so that the
shorter sequence is at most of length M . Thus, we remove the first P =
max(min(m,n)−M, 1) tokens of each string and only align x[P, . . . ,m] against
y[P, . . . , n]. Then, the composite transcript is:

z ≜ x[1, . . . , P]⊕ x[P + 1, . . . ,m]⊕ y[(P + j∗ + 1), . . . , n] (3)

The intuition is that we only to have at most the last M tokens of both tran-
scripts to align them properly. Using the approach, we can make the algorithm
linear without much reduction in its quality.

3.3 Trimming cascaded input transcript

In order to reduce the amount of flickering, we can trim the cascaded transcript.
Instead of simply using the full x[1, . . . ,m] word pieces as an input, we can trim
T word pieces and only use x[1, . . . ,max(m− T, 1)]. While this does not create
an additional latency (since we still use the full causal transcript), this may
cause the composite transcript to have lower quality.

3.4 Alignment cost bailing and adding hysteresis

If the causal and cascaded transcripts differ too much, alignment may not pro-
duce desirable results. Misalignment reduce the quality of the composite result
and when they get corrected cause flickering. We can use the alignment cost
to determine the distance between the two transcripts, and if it is too high, we
simply do not create a composite transcript and keep the causal transcript. We
defined two costs measurements. The first uses the full sequence, namely:

ρf ≜
C(m,n)

m
(4)

We can also limit ourselves to the end of the alignment and only consider
the last K tokens:

6

Algorithm 3 Algorithm that creates a composite result.
procedure CreateComposite(causal partial,cascaded partial)

causal tok← Split(causal partial)
cascaded tok← Trim(Split(cascaded partial))
composite tok← {}
P← max(min(causal tok.size, cascaded tok.size) - M, 1)
codes← LevAlign(causal tok[P..], cascaded tok[P..])
for j← 1 to P do

composite tok.append(cascaded tok[j])
end for
i← P
m← 1
cost← 0.0
for code← codes do

if code == SUBSTITUTE || code == CORRECT then
composite tok.append(cascaded tok[j])

if j > cascaded tok.size - K then
if code == SUBSTITUTE then

c← c + 1.0
end if
m← m + 1

end if
i, j← i + 1, j + 1

end if
if code == INSERT then

composite tok.append(cascaded tok[j])
if j > cascaded tok.size - K then

c← c + 1.0
m← m + 1

end if
j← j + 1

end if
if code == DELETE then

if j > cascaded tok.size - K then
c← c + 1.0
m← m + 1

end if
i← i + 1

end if
end for
while i < causal tok.size do

composite tok.append(causal tok[i])
end while

return c / m, composite tok
end procedure

ρr(K) ≜
C (m,n)− C (max(m−K, 0),max(n−K, 0))

min(K,m)
(5)

We only rewrite the transcript if the cost is below a settable threshold.
However, if we had previously used a cascaded transcript to create a composite
transcript, we fall back to the previously used one, so that we do not suddenly
stop rewriting transcript.

3.5 Overall algorithm

We decompose the overall approach in three algorithms. In algorithm 1, we
show the entry point of our approach. The code keeps pulling for new results
as long as there is still audio to be decoded. In case a partial result comes

7

from the cascaded model, it is suppressed and we only store the text that would
have been outputted. In case a partial result comes from the causal model, we
rewrite it and show it to the user.

In algorithm 2, we show the hysteresis that allows to fall back on previously
used cascaded partial results. We attempt to rewrite the causal partial using
the latest cascaded partial. If the cost of rewriting such partial is low enough,
we record the latest cascaded result and return the composite transcript. If the
cost is too high, then we fall back to unconditionally rewriting the causal tran-
script using the latest cascaded result used. Thus, if the two models completely
disagree, we fall back on the last time they agreed.

Finally, algorithm 3 shows how we create a composite partial result. It
computes the alignment on a subset of the tokens and then outputs the com-
posite tokens. The cost is computed during the reconstruction. For brevity,
the algorithm for trimming of the tokens is omitted. In order to reduce the
flickering of both the causal and cascaded models themselves, we applied the
same deflickering algorithm as Bruguier et al. [2022] with α = 0.2 for our test
model.

4 Results

4.1 Base model

In order to evaluate the quality of our algorithm, we reused the model of Sainath
et al. [2021].

It uses a streaming comformer-transducer where the encoder consists of 12
causal comformer layers Yu et al. [2021], each with 23 frames of left context,
a self-attention with 8 heads, and a convolution kernel size of 15. We use an
embedding prediction network with 2 previous labels as input Botros et al. [2021]
and an embedding dimension of 320. The base model used fast emit Yu et al.
[2021] in order to reduce the latency of the output.

We used a frame rate of 30ms, but the encoder stacks two frames and then
downsamples, the effective frame rate is 60ms. Further, because the cascaded
model looks ahead 15 stacked frames, it means that its output roughly corre-
sponds to what was said about 900ms in the past. We reused the model Narayanan
et al. [2019] which was trained on 400k hours of multidomain data with a one-
hot domain ID Yu et al. [2021] indicating the type of utterance. All data are
deidentified and the collection and handling abide by Google AI Principles aip.

4.2 Results

The results are shown on table 1. We do not report the regular WER as we
verified experimentally that our algorithm indeed does not change the final
results. We measure the UPWR, PWER, and partial latency on four test sets
using the metrics described in section 2.3. The test model is the result of a
sweep of the parameters that gives a good balance between increased quality

8

Test set UPWR PWER
part. trans. all

Dict- Base 0.04 0.12 0.15 3.89
ation Test 0.07 0.06 0.13 3.49

∆ 75% -50% -13% -10%
Voice Base 0.05 0.14 0.19 5.10
Search Test 0.08 0.09 0.16 4.99

∆ 60% -36% -16% -2%
TTS Base 0.03 0.51 0.54 3.64
Audio Test 0.16 0.02 0.18 2.94
book ∆ 433% -96% -67% -19%
Libri- Base 0.05 0.31 0.36 7.47
speech Test 0.17 0.05 0.22 6.18

∆ 240% -84% -39% -17%
Tele- Base 0.08 0.34 0.42 17.63
phony Test 0.23 0.11 0.34 15.51

∆ 197% -68% -19% -12%

Table 1: Results of our proposed approach. As described in section 2.3, we
measure UPWR for all three subsets (for only the partials, only the transition,
and for all results) and PWER for our base and test models. We also show
the change (∆) either in percentage or milliseconds. The dictation test set
are longer-form utterances corresponding to messages. The voice search test
set are shorter queries seeking web results. We used text-to-speech (TTS) to
synthesize long-form audio to produce long utterances. The librispeech test set
is from Panayotov et al. [2015]. Finally, we also reported on a telephony set.
All data was handled abiding by Google AI Principles aip.

and flickering (alpha = 0.2, ρf = ∞, ρr = 0.5, K = 10, P = 25 and T = 1).
We can see that for all sets, the PWER is reduced significantly. The smaller
reduction is for the voice search test set; this is explained by the average duration
of the utterances. Since they are shorter in this test set, the 900ms delay of the
cascaded model has greater impact. There is not as much time to rewrite the
partial results. For the other test sets, the PWER is reduced by at least 10%.

The picture for flickering is more mixed. Because we want to improve the
quality of partial results, we must, by definition, change the decoded words and
because we do not want to increase the latency, we must therefore change already
decoded words and thus cause flicker. We do see a large increase in the flickering
of the partial results (left sub-column of the UPWR section) for all sets, with a
larger increase for test sets for longer utterances. However, the UPWR for the
transition from the last partial result to the final result (middle sub-column) is
significantly lower. This is explained by the fact that our algorithm pulls in the
transition from causal results to cascaded results earlier. Therefore, at the end
of the utterance, the partial results are closer to the final results. Overall, we

9

see that the total UPWR (right sub-column) is lower.
As described in section 2.3, only the change in latency metric is meaningful.

For all tests sets, the change was less than 10ms, well below human perception.
We also ran measurements on a Pixel6a phone and the time spent in each
rewriting is on average below 0.1ms meaning that our algorithm has very low
computation requirements and power consumption.

The reader can observe the effect of the algorithm in videos sup that show the
causal, cascaded, and merged partial results when decoding Librispeech Panay-
otov et al. [2015] utterances.

4.3 Hyperparameter sweep analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T (we chose T = 10)

3.475

3.500

3.525

3.550

3.575

3.600

3.625

PW
ER

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

UP
W

R

PWER
UPWR (all)
UPWR (only partials)
UPWR (only transition)

Figure 2: PWER and UPWER as a function of T

We plotted the PWER and the UPWR metrics according to the hyperpa-
rameter of the model for the dictation test set in figures 2, 3, and 4. Note that
the parameters we chose for the results of table 1 are not the best according to
the plots below. This is because we chose a set of values that had acceptable re-
sults for the many test sets. This is a product judgment call, but we found that
the parameters we chose work well for almost all our test sets. This suggests
that the hyperparameters were not overfitted to the dictation test set.

We see on figure 2 that as T increases (the number of words we remove from
the causal partial), the PWER goes up. This is expected because if we have
fewer causal words (which are usually more correct), we cannot improve the
rewritten transcript as much. As T increases, we see that the UPWR for only
the partials goes down (we rewrite less during decoding, thus we flicker less),
and the UPWR for the transition goes up (by the time the final is shown, we
have rewritten less and thus the transition has more flickering). Overall, the
flickering is neutral.

10

0.2 0.4 0.6 0.8 1.0
rho_r (we chose rho_r = 0.5)

3.45

3.50

3.55

3.60

3.65

3.70

3.75

3.80
PW

ER

0.04

0.06

0.08

0.10

0.12

0.14

UP
W

R

Figure 3: PWER and UPWER as a function of ρr

0 2 4 6 8 10 12 14
K (we chose K = 10)

3.450

3.455

3.460

3.465

3.470

3.475

3.480

3.485

3.490

PW
ER

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

UP
W

R

Figure 4: PWER and UPWER as a function of K

We sweep the ρr parameter in figure 3 where a lower value means that we
want a smaller edit distance. When the parameter is 0.0, we recover the value of
the base model of table 1 (i.e. rewrite nothing). As it goes up, the PWER goes
down because we rewrite more, but the flickering of the partial goes up (because
we merge transcripts that are more different). As for the previous parameter,
the transition UPWR goes down because we are closer to the final result.

We sweep the parameter K in figure 4, which means how many words we
use for the edit distance hysteresis. If we set it to 0, we recover the case where
ρr = 1. As K goes up, we are more strict when accepting rewrites, and thus the
PWER goes up while the flickering goes down.

11

5 Conclusions

Until recently Bruguier et al. [2022], not much attention was paid to the quality
of partial results of streaming ASR systems. It was assumed that improving final
results would automatically improve partial results. Separately, more recent
approaches for streaming decoding used multiple models Narayanan et al. [2021].
We presented an algorithm that doesn’t require a re-architecturing of the model
like in Mahadeokar et al. [2022] but instead relies on a simple, more general, rule
to combine partials from multiple models. Doing so, we are able to significantly
reduce partial word error rate and flickering without impacting partial latency.
The computational cost of our approach is extremely low and therefore well-
suited for on-device recognition. While we used a cascaded architecture to
validate our approach, the proposed algorithm is applicable to any multi-decoder
approach; For example, it can be applied to merging a stream of high quality but
high latency partial results from a server recognizer into a stream of low-latency
partial results from an on-device recognizer.

Our approach also opens a more flexible allocation of the model weights. We
could re-allocate weights away from the causal model and towards the cascaded
one. This could improve the quality of the final result, with limited impact on
the partial results, precisely because we have rewriting.

Further work will focus on expanding the applicability of our approach. One
area of further research is lowering the computational requirements of our sys-
tems by trading memory and computation away from the causal model towards
the cascaded model without impacting the PWER too much. For example, the
causal model could be run greedily with a single beam, or we could re-allocate
the some weights to the cascaded model.

Another area of further research could be multi-stage and intermittent model.
The approach described is easily expanded to 3 or more models, where the
smallest model could be run more often, while the subsequent larger ones only
as needed.

References

Dong Yu and Li Deng. Automatic Speech Recognition. Springer London, 2015.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-Rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 2012.

Peter Brown, James Spohrer, Peter Hochschild, and James Baker. Partial trace-
back and dynamic programming. ICASSP, 1982.

Ethan Selfridge, Iker Arizmendi, Peter Heeman, and Jason Williams. Stability
and accuracy in incremental speech recognition. SIGDIAL, 2011.

12

Gernot Fink, Christoph Schillo, Franz Kummert, and Gerhard Sagerer. Incre-
mental speech recognition for multimodal interfaces. Interspeech, 1998.

Murat Saraclar, Michael Riley, Enrico Bocchieri, and Vincent Goffin. Towards
automatic closed captioning: low latency real time broadcast news transcrip-
tion. Interspeech, 2002.

Jinyu Li, Rui Zhao, Hu Hu, and Yifan Gong. Improving RNN transducer
modeling for end-to-end speech recognition. ASRU, 2019.

Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang,
Duc Le, Kjell Schubert Mahaveer Jain, Christian Fuegen, and Michael Seltzer.
Transformer-transducer: End-to-end speech recognition with self-attention.
CoRR, 2019.

Tara Sainath, Yanzhang He, Bo Li, Arun Narayanan, Ruoming Pang, Antoine
Bruguier, Shuo yiin Chang, Wei Li, Raziel Alvarez, Zhifeng Chen, Chung-
Cheng Chiu, David Garcia, Alex Gruenstein, Ke Hu, Minho Jin, Anjuli Kan-
nan, Qiao Liang, Ian McGraw, Cal Peyser, Rohit Prabhavalkar, Golan Pun-
dak, David Rybach, Yuan Shangguan, Yash Sheth, Trevor Strohman, Mirko
Visontai, Yonghui Wu, Yu Zhang, and Ding Zhao. A streaming on-device end-
to-end model surpassing server-side conventional model quality and latency.
ICASSP, 2020.

Yanzhang He, Tara Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez,
Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang,
Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai
Sim, Tom Bagby, Kanishka Rao Shuo-yiin Chang, and Alexander Gruenstein.
Streaming end-to-end speech recognition for mobile device. ICASSP, 2019.

Arun Narayanan, Tara Sainath, Ruoming Pang, Jiahui Yu, Chung-Cheng Chiu,
Rohit Prabhavalkar, Ehsan Variani, and Trevor Strohman. Cascaded encoders
for unifying streaming and non-streaming ASR. ICASPP, 2021.

Tara N Sainath, Yanzhang He, and Arun Narayanan et al. An efficient streaming
non-recurrent on-device end-to-end model with improvements to rare-word
modeling. Interspeech, 2021.

Tara N. Sainath, Yanzhang He, Arun Narayanan, Rami Botros, Weiran Wang,
David Qiu, Chung-Cheng Chiu, Rohit Prabhavalkar, Alexander Gruenstein,
Anmol Gulati, Bo Li, David Rybach, Emmanuel Guzman, Ian McGraw,
James Qin, Krzysztof Choromanski, Qiao Liang, Robert David, Ruoming
Pang, Shuo yiin Chang, Trevor Strohman, W. Ronny Huang, Wei Han,
Yonghui Wu, and Yu Zhang. Improving the latency and quality of cascaded
encoders. ICASSP, 2022.

Jay Mahadeokar, Yangyang Shi, Ke Li, Duc Le, Jiedan Zhu, Vikas Chandra,
Ozlem Kalinli, and Michael Seltzer. Streaming parallel transducer beam
search with fast-slow cascaded encoders. CoRR, 2022.

13

Ke Li, Jay Mahadeokar, Jinxi Guo, Yangyang Shi, Gil Keren, Ozlem Kalinli,
Michael L. Seltzer, and Duc Le. Improving fast-slow encoder based transducer
with streaming deliberation. ICASSP, 2023.

Steve Noble, Jason White, Scott Hollier, Janina Sajka, and Joshue O’Conno.
Synchronization accessibility user requirements. https://www.w3.org/TR/

saur/#caption-synchronization-thresholds, 2022. [Online; accessed 23-
July-2022].

Markus Muller, Sarah Funfer, Sebastian Stuker, and Alex Waibel. Evaluation
of the kit lecture translation system. LREC, 2016.

Javier Iranzo-Sánchez, Adrià Giménez Pastor, Joan Albert Silvestre-Cerdà, Pau
Baquero-Arnal, Jorge Civera Saiz, and Alfons Juan. Streaming cascade-based
speech translation leveraged by a direct segmentation model. EMNLP, 2020.

Shuo-Yiin Chang, Bo Li, David Rybach, Yanzhang He, Wei Li, Tara Sainath,
and Trevor Strohman. Low latency speech recognition using end-to-end
prefetching. Interspeech, 2020.

Yuan Shangguan, Kate Knister, Yanzhang He, Ian McGraw, and Françoise Bea-
ufays. Analyzing the quality and stability of a streaming end-to-end on-device
speech recognizer. Interspeech, 2020.

Antoine Bruguier, David Qiu, Trevor Strohman, and Yanzhang He. Flickering
reduction with partial hypothesis reranking for streaming ASR. In SLT, 2022.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2001. ISBN
0262032937.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-
rispeech: an ASR corpus based on public domain audio books. In ICASSP,
pages 5206–5210. IEEE, 2015.

Google, Artificial Intelligence at Google: Our Principles. https://ai.google/
principles/.

Jiahui Yu, Chung-Cheng Chiu, Bo Li, Shuo yiin Chang, Tara N. Sainath,
Yanzhang He, Arun Narayanan, Wei Han, Anmol Gulati, Yonghui Wu, and
Ruoming Pang. Fastemit: Low-latency streaming ASR with sequence-level
emission regularization. ICASSP, 2021.

Rami Botros, Tara N Sainath, Robert David, Emmanuel Guzman, Wei Li,
and Yanzhang He. Tied & reduced RNN-T decoder. arXiv preprint
arXiv:2109.07513, 2021.

Arun Narayanan, Rohit Prabhavalkar, Chung-Cheng Chiu, David Rybach, Tara
Sainath, and Trevor Strohman. Recognizing long-form speech using streaming
end-to-end models. ASRU, 2019.

14

https://www.w3.org/TR/saur/#caption-synchronization-thresholds
https://www.w3.org/TR/saur/#caption-synchronization-thresholds
https://ai.google/principles/
https://ai.google/principles/

Supplementary material. Contains three videos from utterances from Lib-
rispeech. A vertical bar shows the boundary between the text coming from
the causal model and the cascaded one. This vertical border is added arti-
ficially in order to understand better the effect of the algorithm and is not
present in the production code. We show an utterance where the PWER is
improved greatly. In particular, we can see that in the base model, the cor-
rection only happens at the very end, when the final result comes from the
cascaded model, rather than being corrected mid-decoding. We also show an
example where the PWER is degraded. While the cascaded model has bet-
ter quality on average, it sometimes performs worse than the causal model.
Finally, we also show an example of high increase in flickering.

15

	Introduction
	Goals and constraints
	Overview
	Combining results from two models
	Metrics of interest

	Proposed algorithm
	Intuition and core algorithm
	Cropping partial results for non-quadratic growth
	Trimming cascaded input transcript
	Alignment cost bailing and adding hysteresis
	Overall algorithm

	Results
	Base model
	Results
	Hyperparameter sweep analysis

	Conclusions

