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Abstract

Automatic speech recognition that involves people’s names is
difficult because names follow a long-tail distribution and they
have no commonly accepted spelling or pronunciation. This
poses significant challenges to contact dialing by voice. We pro-
pose using personalized pronunciation learning: people can use
their own pronunciations for their contact names. We achieve
this by implicitly learning from users’ corrections and within
minutes making that pronunciation available for the next voice
dialing. We show that personalized pronunciations significantly
reduce word error for difficult contact names by 15% relatively.
Index Terms: speech recognition, pronunciation, personaliza-
tion

1. Introduction

Voice contact dialing and texting has become increasingly im-
portant due to the popularity of smartphones [1]. Compared to
other speech recognition tasks such as voice search and dicta-
tion, voice contact dialing poses some unique challenges. The
key part of voice contact dialing is to get the contact name cor-
rectly recognized, otherwise the call cannot be initialized or is
initialized to a wrong person. This is very challenging for sev-
eral reasons. First, name utterances are short; they usually con-
tain very few words, for example, “call Jennifer”. This means
that there is not much context that a language model can lever-
age. Second, contact names usually have many variants and
many names have foreign origins. Thus it is hard for other peo-
ple without this knowledge to pronounce them correctly. For
example, the Chinese name “Fuchun” is often pronounced as
“Fortune” by people who don’t speak Chinese natively. Thus,
recognition accuracy of contact names usually is far worse than
other voice search queries [2, 3].

To alleviate these problems, Aleksic et al. [2] use contact
biasing toward the names on the contact list. This can be con-
sidered language modeling personalization. They then look up
each name in a pronunciation dictionary and, in case the name
is not present, use a pronunciation prediction model [4]. If the
pronunciation for a name is wrong, the recognizer will system-
atically misrecognize that name, resulting in a very frustrating
user experience.

It is prohibitively costly for humans to transcribe the pro-
nunciations manually for all the words in an ASR system and
it is much easier to collect written text. For American English,
we have a human pronunciation for about of 12% the words.

For the words not in our dictionary, we use a machine learn-
ing grapheme to phoneme (G2P) model to generate pronuncia-
tions [4]. The G2P has a word accuracy of only 65%. The
low number can be explained by the variety of the word we are
predicting (common names, personal names, acronyms, street
names, etc...) and that we also predict the English pronuncia-
tion of words of foreign origin. When a pronunciation is incor-

rect, it is more difficult for the word to be recognized because
at least one phoneme doesn’t match what the users are saying.
Thus, even if a word is in vocabulary, it can be difficult for our
system to recognize it.

For names, the problem is even more acute for two reasons.
First they follow a long-tail distribution, meaning that they are
more likely to be missing from our pronunciation dictionary.
Second, even if they are present in our dictionary, a user may not
pronounce the name according to the generally accepted way.

Data driven approaches have successfully learned pronunci-
ations from data [5, 6, 7] improving accuracy to 90%. Previous
efforts in pronunciation learning focused on learning pronunci-
ation offline from a large amount of data, and then applied the
learned pronunciations to all users. This aggregated approach is
effective yet the benefit of data driven pronunciation learning is
not fully maximized. It requires enough samples to generalize
the learned pronunciations to new utterances. Thus, we have
to throw away a lot of pronunciations that are reasonable for
certain users, but not common enough to be used by all users.

This is especially true for contact names since contact
names have significant variations in pronunciations. Different
people may have different pronunciations for the same names.
For example, for “Johan Schalkwyk” the correct pronunciation
is “9 U h A n” for “Johan” and “S O 1k w @ k” for “Schalk-
wyk” !, but people can also say “dZ oU h A n” for “Johan”
and “sk Ak w @ k” for “Schalkwyk”. For speech recognition,
even though “dZoUh Ansk Akw @ k” is not the canonical
pronunciation, we still need to make recognition work.

In order to estimate how severe the lack of dictionary pro-
nunciation is, we collected all the learned pronunciations from
the logs in the form of a (word, pronunciation) tuple. We
restricted the sampling to examples where the contact name
wasn’t recognized properly. We then counted the number of
users where this tuple appears. If a tuple appears multiple times
for a given user, it counts as one. We found 98% of contact
pronunciations only occur fewer than 10 users (Table 1). These
pronunciations appear in so few distinct users that they are prob-
ably not commonly accepted. If the reason that we don’t recog-
nize the name properly is that it has a commonly accepted pro-
nunciation but we don’t know what it is, the histogram would
have been heavier in the bin with a larger number of distinct
pair. If that had been the case, it would have made sense to
merge these canoncial pronunciations across users.

To address this long-tail problem, we propose using per-
sonalized pronunciations. In particular, we propose a method
to identify the difficult names where ASR originally failed and
the user manually provided the right contact name, we learn the
pronunciations for such names on the fly and apply them to fu-
ture recognition of this user’s utterances shortly after they are

'We use x-sampa phone notation, https://en.wikipedia.org/wiki/X-
SAMPA



Number of distinct pair | Fraction of traffic
81.10%
8.68%
3.39%
1.74%
1.01%
0.71%
0.53%
0.35%
0.35%
10 or more 2.15%

O 0 JN N B W -

Table 1: Distribution of pair of (word, pronunciation).

learned. We propose a practical architecture and algorithm im-
provements, and demonstrate significant improvements in real
data. To our knowledge, we are the first to propose using per-
sonalized pronunciations for ASR and demonstrate its effective-
ness over state of the art recognition engines.

2. Related Work

Our work falls into general pronunciation modeling such as
grapheme to phoneme modeling (G2P) [4, 8, 9]. Different from
these grapheme to phoneme prediction based on pure text, our
work learns pronunciations from both audio and text.

Our work is also closely related to pronuciation learning
from audio [5, 10]. The difference is that here we learn the
pronunciations for personalization. Personalization poses new
challenges in both architecture and learning algorithms. We
have to implement a new real time error detection mechanism
and an architecture that makes use of personalized pronuncia-
tions. We also need to make changes in learning algorithms to
handle varieties of names.

Another line of related work is personalized name recog-
nition based on contact biasing [2, 11] and salient n-gram bi-
asing [12]. Those can be considered as language model per-
sonalization. Our work is built on top of that, but focuses on
prounciation personalization.

Our work is also related to acoustic model adaptation [13].
Acoustic model adapatation is difficult as it requires enough
personalized data to adapt. Instead, we adapt at the pronun-
ciation level, which does not need to retrain an acoustic model
and can be done in real time and from a single example.

3. Learning Personalized Pronunciation
3.1. Audio Driven Pronunciation Learning

The audio driven pronunciation learning algorithm is the back-
bone for our system. We extend the approach of [5].

In speech recognition, we wish to find the word sequence
W™ that maximizes the likelihood of the acoustic observations,
X

W* = arg max P(W;|X) (D)
= arg max P(X|W;)P(W;). )

Assuming that different phoneme sequences S; can un-
derlie the same word sequence W; (pronunciation dictionar-
ies often allow multiple pronunciations per word), and with the
Viterbi approximation, Eq. 2 becomes

W* = argmax P(X, Sj|W;) P(S}) 3)
¥

= argmax P(X|S)P(SHW)P(W). ()
2,0

For the purpose of pronunciation learning, we instead as-
sume that the word sequence W; corresponding to the acoustic
sequence X is given, but multiple pronunciations are available.
We wish to find the pronunciation sequence S™ that maximizes
the likelihood of the acoustic data, under the assumption of the
given word sequence W:

S* = argmax P(X|S;)P(S;|W)P(W) (5)
J

= arg max P(X|S;). (6)
J

where P(S;|W) and P(W) can be dropped if we assume equal
priors on pronunciations and words, respectively. Essentially,
we force-align the transcript against the audio to extract the best
phoneme sequence as pronunciation.

3.2. Architecture for Personalized Pronunciation Learning

Personalized pronunciation learning consists of the following
two parts: learning and serving, as illustrated in Figure 1.

The entire pronunciation learning process has a latency in
the order of minutes, i.e., when the original recognition failed
and the user made a correction, in a few minutes the learned
pronunciation will go into effect. Our system listens to correc-
tion events using a publisher-subscriber approach [14]. Once
the events are received, we join with the audio data and learn the
personalized pronunciation. The vast majority of the latency is
due to the globally replicated nature of the storage and waiting
for a consistent state. The active pronunciation learning code
runs for a time on the order of seconds.

i -
phone Pron-
Kmo? learning
Clément
—_ h
seard -
o= frontend

Figure 1: Architecture of personalized pronunciation of learn-
ing and serving.

The learning part consists of these components:
1. Extract audio and its corresponding contact names.
2. Construct pronunciation learning request.

3. Store the learned pronunciations for the contacts in the
person’s own database.

In serving, recognizer extracts the personalized pronunci-
ation from the user’s account to construct decoder graph. We
will describe each of these components in more details below.



3.2.1. Extract audio and its corresponding contact names

When the correct contact name is not recognized, a user inter-
face provides the option to select the intended contact from the
contact list. For example, a user uttered the command “Call
Clément” and the ASR system misrecognized the name and
transcribed the command as “Call Kimo”. Since “Kimo” is not
in the contact list, there is a user interface asking the user to se-
lect a contact to make the call. The user manually corrects with
a tap and selects the correct contact (“Clément”) and the phone
call is initiated. If the contact “Kimo” had been in the contact
list, the user would have had the option to interrupt the dialing
and make a manual correction.

The actions of the users were previously not used beyond
completing the call and a correction did not result in a changed
behavior of the recognizer. To make use of this information, we
use a PubSub service [14] to monitor these actions. When the
subscriber identifies these sequence of actions, we can associate
the corrected contact names with the original audio.

3.2.2. Construct Pronounciation Learning Request

A pronunciation learning request consists of audio and its cor-
responding transcript. The transcript will be aligned with audio.
While we do know the contact’s name as it appears in the list,
we do not know whether the user refered to that contact by her
first name, last name, or a combination of the two parts. This
complicates the pronunciation learning algorithm as we need to
provide the transcript truth [5], but the exact transcript is un-
known.

To solve this issue, we extended the algorithm of [5] to ac-
cept multiple transcripts. We create multiple paths for each pos-
sibility as shown in figure 2. In this example, the transcript is
“call SNAME” and the user’s action suggests that she intended
to call “Antoine Bruguier”. However, we do not know what the
user said for the name and thus we hypothesized that it could be
either “Antoine”, “Bruguier”, “Antoine Bruguier”, or “Bruguier
Antoine”. We inserted these four possible branches in the oth-
erwise linear FST to obtain the FST shown here. During the
decoding, we keep track of which path has the lowest acoustic
cost, and the name parts that belong to this path are the ones for
which pronunciations are learned.

Antoine:Antoine

Bruguier:Bruguier

‘ Antoine: Antoine
Bruguier:Bruguier e

Figure 2: Example of construction of the G (grammar) FST for
pronunciation learning.

Bruguier:Bruguier

( : ) call:call

Antoine: Antoine

Another improvement to the learning algorithm is that we
limit pronunciation learning to only the contact names, and for
the other words in the transcript (such as call, text, etc), we use
default pronunciations. This is done by not generating candi-
dates for words we do not want to learn and instead using dic-
tionary pronunciations. This approach restricts the number of
allowed paths in the force alignment step and acts as a regular-
ization.

For languages other than American English, the construc-
tion of the FST may be more complicated. For example, some
languages such as Russian use declensions and we need to take
into account the correct case of the words. Chinese names are

not separated by spaces. For the rest of this paper, we will focus
on American English recognition.

3.2.3. Personalized Pronunciation Storage

The learned pronunciations can be stored on the server asso-
ciated with the user’s account, or it can be stored locally on
device. The server storage is globally replicated for fast access.

3.2.4. Replacing Decoder Graph

At serving time, we retrieve the pronunciation from users per-
sonal account, and construct a lexicon-grammar (LG) FST for
the contact names [15]. The G graph contains all the names in
the user contact list and is constructed in the same way as in
[3]. The lexicon (L) FST contains the pronunciations for the
words in Grammar (G) FST. We use personalized pronuncia-
tion if they are available. If no personalized pronunciation is
available, we revert to the previous behavior of [3] and use a
dictionary or G2P pronunciation. We then compose the L and
G graphs to get LG. The entire process happens on the order of
miliseconds, to allow for real-time recognition.

3.3. User experience

From the users’ prospective, the interaction is seamless. When
a contact recognition fails, they can manually select the correct
contact and continue with their intended action. The learning
code is triggered without any further interaction and the pro-
nunciation is used next time they issue a voice query.

4. Experiments
4.1. Privacy Consideration

For each utterance, we only recorded the name of the intended
contact and not the full contact list. We also anonymized the
utterances, making it impossible to track a user.

4.2. Datasets and Metrics

We built two data sets by randomly sampling utterances. We
stripped all the personal information for the user, and thus we
only had access to the audio and the person the user intended to
call.

The first data set contained utterances sampled from user
corrections. Since we use contact list for language model bias-
ing [2] yet we do not access the user’s contact list, we have to
simulate a contact list. To do so, we follow the same strategy
used in [2, 3] by grouping utterances together. For each utter-
ance we hashed its information into a bucket number. We then
collected all the utterances in that bucket and create a contact list
from all the person contacted. For example, if we had 4,000 ut-
terances, we assigned to each of them a bucket number between
1 and 20, resulting in 20 groups of about 200 utterances each.
Following previous practice [3], we chose 200 as the number of
contacts for experiments. In each of the groups, we collected
all the persons called, resulting in a contact list of about 200
for each of the utterance. Thus, in each utterance there was
the intended contact present, and about 199 other contacts that
the user did not intend to reach. These groups, coming from
randomly-sampled utterances were treated as containing utter-
ances coming from a single-user, despite this not being the case.

The second data set contains only names, for example,
“Francoise Beaufays”. This data set is not for voice dialing. In-
stead, the data was mined from voice search logs for evaluating



contact biasing purpose [3]. We use it here to evaluate person-
alized pronunciation, to see if the improvements on names can
transfer to voice search queries.

4.3. Results

Our first experiment was on sampled traffic data that was per-
sonalized (table 2). We measured performance in terms of word
error-rate (WER) on 3,800 utterances, with about 200 contacts
per utterance. The utterances had an action (e.g. “call ...”, ”’send
a text to ...”) and a name. Adding personalized pronunciations
reduces the WER by 3% over simple contact biasing, a 15%
relative reduction. For every 6 utterances where the recognition
was improved, 1 utterance was made worse. Similar improve-
ments (table 3) are observed a data set that consisted of only a
name (without any action words).

Experiment WER
Contact biasing, dictionary pronunciations 22.6
Contact biasing, personalized pronunciations | 19.6

Table 2: Word error rates (WER) on a data set of actions that
contained a name, with and without personalized pronuncia-
tions

Experiment WER
Contact biasing, dictionary pronunciations 23.3
Contact biasing, personalized pronunciations | 20.3

Table 3: Word error rates (WER) on a data set with only name,
with and without personalized pronunciations

5. Discussions
5.1. Error Analysis

A win/loss ratio of 6 to 1 indicates that personalized pronuncia-
tion overall is a great success, but it is not perfect. Not surpris-
ingly, most names with improved recognition are foreign names
where the G2P pronunciations were clearly wrong. The person-
alized pronunciations learned from audio are much better. Be-
low are two illustrative examples (we truncated the names to
preserve our users’ privacy).

Case 1: “Call Ghaythan” was recognized as “Call Nathan”, be-
cause the pronunciation for ”Ghaythan” was dz i eI
tS eI w al T @ n. This pronunciation does not
match what the users said, and the acoustic score is very
low. We learned the personalized pronunciation from au-
dioasg eI D @ n, which reflects what the user said.

Case 2: “Call Maa” was recognized as “Call my”. The G2P
predicted E m eI eI for “Maa” (spelling out the let-
ters) and we had the entry m aI for “my”. Since the
user said m @, the (incorrect) transcription “Call my”
was used, because m Q@ isclosertom aIlthanE m el
eI. The issue was fixed after learning the correct pro-
nunciation.

When looking at the failure cases, some are actually judge-
ment calls. For example, Call Dan becomes Call Daniel when

the audio says “d { n”. This is marked as regression because
“Dan” reflects the audio. However, the entry in the contact list
is actually “Daniel”. We learned pronunciation “d { n” for
“Daniel”. Thus after personalized pronunciation when people
say call “call Dan”, it becomes “call Daniel” and will trigger
call dialing correctly.

A real regression case happens when the transcript contains
foreign words that can be pronounced close to other words in
English. For example, Call La Casa becomes Call Mi Casa.
This utterance mixes English and Spanish, but our systems can-
not switch language mid-utterance. In this case, English was
used throughout for pronunciation learning. The forced align-
ment used an English acoustic model, phoneme set, and candi-
date generator. The result is that we learn the pronunciation for
Mitobem @.Language mixing is currently an open issue.

5.2. Impact of Multiple Transcripts

We wanted to evaluate the impact of multiple-transcript when
learning personalized pronunciations. We ran two experiments.
In the first experiment, we did insert the multiple transcripts
while in the second one, we forced the transcript to be first name
followed by last name (despite the fact that this didnt always
correspond to what was said). We saw the WER slightly re-
gressed from 19.6 to 19.8. Although the regression is not huge,
it shows the necessity of the multiple transcripts.

5.3. Issues Beyond Pronunciations

Personalized pronunciation reduces WER from 22.6 to 19.6,
which is substantial. There are still issues with names. In some
cases, we close the microphone too early and the name is cut
out. In other cases, even though we learn the correct pronunci-
ation for the contact name, a misrecognition still occurs. Some
users write their contact name in other scripts than the one for
the language they speak. For example, they write “Samuel”
with Hebrew script and use voice commands in English. This
means that perfect contact name recongition requires work be-
yond pronunciations.

6. Conclusions

We have proposed learning personalized pronunciation for con-
tact names. We presented an architecture based on Pub-
Sub [14] to extract users’ corrections for contact recognition.
The learned pronunciation goes into effect in minutes. Exper-
iments on real contact dialing data show 15% WER reduction.
This is just the first piece of work we have done for pronuncia-
tion personalization. The framework can be easily extended to
other scenarios beyond calling contacts, such as business names
and location names.
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