
SHARING LOW RANK CONFORMER WEIGHTS FOR TINY ALWAYS-ON AMBIENT
SPEECH RECOGNITION MODELS

Steven M. Hernandez1, Ding Zhao2, Shaojin Ding2, Antoine Bruguier2,
Rohit Prabhavalkar2, Tara N. Sainath2, Yanzhang He2, Ian McGraw2

1Virginia Commonwealth University, 2Google

ABSTRACT
Continued improvements in machine learning techniques offer ex-
citing new opportunities through the use of larger models and larger
training datasets. However, there is a growing need to offer these
new capabilities on-board low-powered devices such as smart-
phones, wearables and other embedded environments where only
low memory is available. Towards this, we consider methods to re-
duce the model size of Conformer-based speech recognition models
which typically require models with greater than 100M parameters
down to just 5M parameters while minimizing impact on model
quality. Such a model allows us to achieve always-on ambient
speech recognition on edge devices with low-memory neural pro-
cessors. We propose model weight reuse at different levels within
our model architecture: (i) repeating full conformer block layers,
(ii) sharing specific conformer modules across layers, (iii) sharing
sub-components per conformer module, and (iv) sharing decom-
posed sub-component weights after low-rank decomposition. By
sharing weights at different levels of our model, we can retain the
full model in-memory while increasing the number of virtual trans-
formations applied to the input. Through a series of ablation studies
and evaluations, we find that with weight sharing and a low-rank
architecture, we can achieve a WER of 2.84 and 2.94 for Librispeech
dev-clean and test-clean respectively with a 5M parameter model.

Index Terms— Model compression, conformer, weight sharing,
low rank decomposition, embedded speech recognition

1. INTRODUCTION

Automatic speech recognition (ASR) is an essential component in a
growing number of spoken language interfaces on mobile devices.
Recently, long running applications such as transcribed recording,
live captioning, and generalized keyword spotting are emerging, and
are even more challenging on edge devices due to the limited re-
sources. Always-on ambient speech recognition, the most ambitious
use scenario, leverages advances in both deep learning and embed-
ded neural processing hardware to enable always-running ASR on
low power edge devices.

To achieve efficient always-on recognition with edge devices, in-
stead of running a standard ASR model, alternative approaches are
usually considered, such as recognizing a single keyword [1] or just
a small set of intents [2]. However, this is not possible for keyword-
less interactions and also requires newly trained models each time
new intents are made available. As such, in this work, we aim to
focus on the extendability achieved by a generalized speech recog-
nition model. However, recent advances in machine learning come
at the expense of ever increasing model sizes (i.e., 100M parame-
ters and higher). These models are not tractable for always-running

This work was done while Steven M. Hernandez was an intern at Google.

on neural accelerators such as edge TPUs [3], which are limited to
fewer than 6M parameters due to hardware memory constraints. In
fact, to achieve inference using such large model sizes, the model
must be split into smaller chunks which are then continuously trans-
ferred from memory to TPU, leading to poor energy usage and poor
latency for ambient speech recognition tasks.

In this paper, we look for methods to reduce the size of
Conformer-based [4] speech recognition models to achieve always-
on ambient speech recognition, which can efficiently leverage spe-
cialized hardware such as edge TPUs. To do this, we propose
model weight reuse at different levels within our Conformer ar-
chitecture such as: (i) repeating full conformer layers, (ii) sharing
specific modules across conformer layers, (iii) sharing specific
sub-components within each conformer module, and (iv) sharing
low-rank sub-weights after low-rank decomposition. Unlike other
model compression techniques like low-bit quantization [5] and
sparsity [6] which assume the use of specialized hardware features
which we will discuss in Section 2, both sharing and low rank ar-
chitectures can be achieved with existing neural accelerators. By
sharing weights across layers, we can increase the number of virtual
transformations applied to our input data without increasing the
physical size of the model weights in memory. Increasing the num-
ber of virtual transformations in our model allows for more complex
transformations on our model input which emulates the transforms
typically found by increasing the number of layers in a model.

2. RELATED WORKS

Performing machine learning model inference on-board low power
edge devices has recently achieved greater attention for tasks such as
device-free wireless sensing [7], computer vision [8], and numerous
other tasks [9]. At the core of edge model inference is achieving
model compression for use on low power and low resourced devices.

Model compression has commonly been achieved through a
number of methods such as sparsity pruning [6, 10, 11], low-bit
quantization [12, 13, 14], knowledge distillation [15, 16], and low-
rank matrix factorization [17, 18]. These techniques can typically
be applied regardless of the model architecture which allows them
to be generalized to different tasks. However, some methods as-
sume access to specific hardware features that may not be available
on edge devices. Model sparsity techniques offers the ability to
prune weights until an exact model size is achieved. However, with-
out structured sparsity [19], the resulting model requires irregular
memory access and without hardware support, memory usage and
computation become inefficient. Quantization is typically applied
to reduce model weights from 32-bit floating point values down to
8-bit integer values, and is also applied to lower quantization levels
(i.e., 1-bit, 2-bit, or 4-bit [5, 14]) and even mixed-precision quan-
tization [20]. However, computations on low-bit quantization levelIC

A
SS

P
20

23
 -

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

co
us

tic
s,

Sp
ee

ch
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g

(I
C

A
SS

P)
 |

97
8-

1-
72

81
-6

32
7-

7/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

A
SS

P4
93

57
.2

02
3.

10
09

50
06

Authorized licensed use limited to: GOOGLE. Downloaded on June 23,2023 at 15:35:40 UTC from IEEE Xplore. Restrictions apply.

models are not available on typical real-world hardware. On the
other hand, techniques like knowledge distillation and low-rank de-
composition are computed off-device and thus performing inference
on these compressed models is identical to non-compressed models.

3. METHODS

3.1. Conformer Model
For our ambient ASR task, we leverage the conformer model archi-
tecture [4], an extension to the transformer model architecture [21].
For the intents of this work, we will focus on reducing the size of the
conformer encoder since we find that it takes up greater than 90% of
the overall model size. The size of the encoder is primarily a result of
the N conformer blocks, thus we will also focus on ways to reduce
the size of the encoder by both reducing the size of the individual
conformer blocks as well as reducing the need for large values of N .

We define the i-th conformer block C(i) in our model as
C(i)

(
F

(i)
start, A

(i), C(i), F
(i)
end

)
where Fstart, A, C, Fend are the pa-

rameters for the feed forward start, attention, convolution and, feed
forward end modules respectively within the i-th conformer block
C(i). Fig. 1 illustrates the largest size sub-components for each
of the modules. It is important to recognize these largest sub-
components when reducing the size of our model because these are
the weight matrices which we should focus on compressing. Notice,
that while the architecture of our conformer contains many unique
features, the size of the conformer blocks is primarily the result of
several linear layers. Thus, if we can apply a compression technique
to simple linear layers, then they can be similarly applied throughout
the entire conformer model.

3.2. Repeat Full Layers
Suppose we have a conformer model with N conformer blocks C(i)

where i ∈ {1, . . . , N}, then we can repeat each i-th layer R[i] times
as suggested in [22] by sharing the i-th layer’s parameters. Our con-
former transformation will then be described as a series of n-fold
iterative functions defined as:

f◦n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

, (1)

where f is some transformation function, and n is the number of
times that the function is composed over itself. As such, our con-
former transformation could be described as:
C(N) ◦ · · · ◦ C(N)︸ ︷︷ ︸

R[N]

◦ · · ·◦C(2) ◦ · · · ◦ C(2)︸ ︷︷ ︸
R[2]

◦C(1) ◦ · · · ◦ C(1)︸ ︷︷ ︸
R[1]

, (2)

or C◦R[N]

(N) ◦ · · · ◦ C◦R[2]

(2) ◦ C◦R[1]

(1) . (3)

By repeating layers, we retain a set number of physical conformer
layers (N) while increasing the number of virtual conformer layers
or the number of transformations (R × N). By performing n-fold
iterative conformer transformations, we expect that we can trans-
form our input with more complex transformations without directly
increasing our cost from a model size perspective.

3.3. Sub-component Customization
While we expect that the higher complexity transformations offered
by repeating layers will be of benefit to our model architecture, there
is still a clear intuition that a model with R × N virtual layers will
likely not be able to perform better than a model with R×N physical
layers due to the increased number of distinct parameters available in
the model. Thus, we may wish to allow for layer repeating but with

Encoder (12.2M)
Conformer Block (×16)100.0%

FF Start ..39.0%
Linear (1)19.5%
Linear (2)19.5%

Attention ...14.0%
Key ..2.8%
Value ...2.8%
Query ...2.8%
Post ..2.8%
Pos Query ...2.8%

Convolution ...8.0%
Pre-Conv ...5.2%
Conv ..0.2%
Post-Conv ...2.6%

FF End ...39.0%
Linear (1)19.5%
Linear (2)19.5%

Decoder (1.8M)

Fig. 1. High level composition of our base 14M parameter Con-
former model (B0). We focus on reducing the size of the 16 con-
former blocks within the encoder portion through sharing (i) full
conformer blocks, (ii) modules, and (iii) sub-components.

some slight customization per layer. By allowing customization, we
can retain our ability to reduce model size through sharing, but we
also allow conformer blocks to perform unique transformations in-
stead of strictly iterative function composition.

Our first effort towards this is to only share certain modules
within our conformer blocks. Sharing specific modules such as feed
forward or attention modules was initially reviewed in [23] towards a
reduced size BERT model. We define sharing indices IFS , IA, IC ,
IFE which correspond to our feed forward start, attention, convolu-
tion, and feed forward end modules respectively1. Each of the de-
scribed sharing indices Ix, are subject to the following constraints:
|Ix| = N , min(Ix) = 1, max(Ix) ≤ N . With these sharing
indices, we can now define our i-th conformer block as:

C(i)

(
F

(
I(i)
FS

)
start , A

(
I(i)
A

)
, C

(
I(i)
C

)
, F

(
I(i)
FE

)
end

)
. (4)

Digging deeper into the structure of our conformer modules,
even smaller sub-components can be found. In Fig. 1 we see that
the largest sub-components are primarily linear layers. Beyond these
sub-components, there are also some much smaller modules which
have miniscule effect on decreasing the model size, yet may allow
for better customization of our shared conformer layers. As such,
we suggested that these smaller components can be excluded from
our model sharing system, thus allowing improved model perfor-
mance. Furthermore, we expect that certain sub-components may
hold great importance in providing improved model performance
and thus should not be shared even though they do contribute to in-
creasing model size.

3.4. Low-Rank Factorization

As illustrated in Fig. 1, the largest sub-components within our con-
former are normal linear layers composed of a weight matrix M and
bias b. The complexity of the conformer comes from the specific
architecture of the model rather than the complexity of the specific
sub-components. Since the weight matrix is much larger in size than
the bias, we will focus on reducing the size of M . Supposing that
M ∈ Rm×n, we can apply low-rank decomposition [17] to reduce

1Other modules are ignored due to the large relative size of these modules.

Authorized licensed use limited to: GOOGLE. Downloaded on June 23,2023 at 15:35:40 UTC from IEEE Xplore. Restrictions apply.

Conformer Layers WER Model
SizePhysical Virtual dev test

SL0 1 1 10.69 10.53 2.55M
SL1 1 2 9.15 9.18 2.55M
SL2 1 3 8.39 8.71 2.55M
SL3 4 4 4.13 4.30 4.84M
SL4 4 8 3.50 3.76 4.84M
SL5 4 12 3.20 3.45 4.84M
SL6 4 16 3.31 3.67 4.84M

Table 1. Sharing full layers by passing layer output into itself.

M into three distinct sub-matrices: U ∈ Rm×k, V ∈ Rn×k, and
Σ ∈ Rk×k a diagonal matrix which can be found through:

min
U,Σ,V

||M − UΣV T ||, (5)

using singular value decomposition (SVD). Given k � min(m,n),
the number of parameters for any M in our model can be reduced.

While reducing k allows us to reduce the number of parameters
for a given matrix, it also greatly increases the reconstruction error.
To account for this, typically model fine-tuning is performed after
decomposition to account for loss in model performance. In our
case, we instead begin with a low-rank structure when training from
scratch which allows us to forgo the need for training followed by
fine tuning and also allows us to ignore the use of singular value
decomposition. As such, for simplicity, Σ can be combined with U
or V in our low-rank reconstruction structure as suggested in [24].
Thus, we can restate our reconstruction structure as M ∼ UV T .

4. EXPERIMENT DESIGN

4.1. Dataset

We evaluate on the LibriSpeech datasets [25] which consists of 960
hours of training data (i.e., train-clean and train-other) and we evalu-
ate on dev-clean and test-clean. The spoken-word input data is struc-
tured as 80 log Mel-filterbank energy features with a window size of
25ms and a 10ms stride. The output is modelled using a word-piece
model (WPM) embedding with a dimensionality of 1, 024.

4.2. Model Architecture

We begin our evaluations with a conformer architecture (B0) with
14M parameters and 16 conformer block layers consisting of 0.7M
parameters each. This baseline architecture achieves a word-error
rate (WER) of 2.18 on dev-clean and 2.53 on test-clean, however,
our goal is to reduce this model down to approximately 5M param-
eters (a reduction of approximately −65%), thus this model is not
applicable for always-on ambient ASR using low-power edge TPU
devices. Notice, we begin with a 14M parameter model rather than a
larger 100M+ parameter model since it is a common size for “small”
models in the literature [4, 26]. We also design a handcrafted 5M
parameter version of this model (B1) as a baseline with 8 conformer
block layers with a size of 0.5M parameters each. This 5M baseline
model achieves a WER of 3.53 on dev-clean and 3.72 on test-clean.

5. RESULTS

5.1. Repeat Full Layers

We begin our evaluations by reviewing the results of sharing full
conformer layers. When sharing conformer layers, we repeat the

Non-Shared
Modules

Model
Dim.

WER Model
Sizedev test

SM0 F.F. Start 96 3.56 3.64 4.93M
SM1 Attention 128 3.19 3.48 4.99M
SM2 Convolution 136 3.13 3.35 5.03M
SM3 F.F. End 96 3.64 3.88 4.93M

SM4 Attention
+ Convolution 120 3.22 3.36 5.03M

Table 2. Sharing conformer layers (i.e., 4 Physical, 12 Virtual),
while unsharing specific modules.

conformer transformations in order over multiple repetitions. Sup-
pose we have N conformer blocks repeated R times, we define the
number of physical conformer layers as N and the number of virtual
conformer layers as N × R. By increasing R, we can achieve an
increase in the number of transformations applied to our input data
with the expectation that increasing the number of transformations
will allow an improvement in the model quality. In Table 1, we be-
gin by reviewing the model quality with a single physical conformer
layer repeated different numbers of times. We observe that even with
one physical conformer block (SL0-SL2), the WER decreases as the
number of repetitions is increased (i.e., an increase in the number
of virtual layers). With just 3 repetitions of the single conformer
layer (SL2), our model is able to decrease the WER by −2.30 and
−1.82 for dev and test respectively. Even so, the WER rates are still
large, so while we demonstrated that increasing the number of vir-
tual layers can improve the model quality, the quality is still good
enough. To improve this, we increase to 4 physical conformer lay-
ers (SL3-SL6) which also brings our model size closer towards our
goal of 5M parameters. We find that repeating the conformer block
transformations three times (SL5) reduces the WER by −0.93 and
−0.85 for dev and test respectively compared to just one iteration of
each conformer block layer. However, we find that further increas-
ing to four repetitions per conformer block (SL6) begins to degrade
our model quality. Thus, there is a limit to the number of times con-
former blocks should be repeated.

5.2. Sharing Conformer Modules

Next, we dig into the structure of the conformer blocks to identify
the major modules which we can either enable or disable sharing.
In Table 2, we use the shared conformer block model with 4 physi-
cal conformer layers repeated 3 times (SL5) as our base model and
then select certain conformer modules to disable sharing (i.e., un-
share). By unsharing individual modules, the model size increases,
and thus, we must reduce the internal model dimension to compen-
sate. Unsharing the convolution layer (SM2) offers the lowest WER
rates at 3.13 and 3.35 for dev and test respectively. However, it is in-
teresting to observe that unsharing the feed forward start (SM0) and
feed forward end (SM3) modules significantly increases the WER
rates. We can attribute this to the fact that both feed forward mod-
ules are so large in size, and thus, by not sharing these modules,
we must greatly reduce the size of the model weight dimensionality
hyperparameter to compensate.

5.3. Sharing Sub-Components

To further our understanding of how sharing of different components
affects quality, we next look at disabling sharing (i.e., unsharing)
for specific sub-components within our model. Again, we lever-
age the best model from Table 1 where we have 4 physical lay-

Authorized licensed use limited to: GOOGLE. Downloaded on June 23,2023 at 15:35:40 UTC from IEEE Xplore. Restrictions apply.

Non-Shared Sub-Components WER Model
SizeModule Sub-Component dev test

SC0 F.F. Start Linear (1) 3.10 3.23 6.02M
SC1 F.F. Start Linear (2) 3.16 3.20 6.02M
SC2 Attention Query 3.24 3.37 5.01M
SC3 Attention Value 3.23 3.40 5.01M
SC4 Attention Key 3.09 3.29 5.01M
SC5 Conv. Pre-Conv. 5.49 5.81 5.17M
SC6 Conv. Conv. 3.02 3.16 5.35M
SC7 Conv. Post-Conv. 3.37 3.71 5.01M
SC8 F.F. End Linear (1) 2.99 3.18 6.02M
SC9 F.F. End Linear (2) 3.08 3.30 6.02M

SC10 All Misc. Small 2.95 3.28 5.36M

Table 3. Effect of allowing certain conformer sub-components to be
shared or not shared.

Conformer Layers
Rank (k)

WER Model
SizePhysical Virtual dev test

LR0 4 4 N/A 4.13 4.30 4.84M
LR1 8 8 50 3.46 3.69 5.04M
LR2 12 12 20 3.70 3.75 4.98M
LR3 16 16 6 3.81 4.05 5.00M

LRS0 8 16 50 3.14 3.36 5.04M
LRS1 8 24 50 2.99 3.23 5.04M
LRS2 8 32 50 2.88 3.25 5.04M
LRS3 8 40 50 2.84 2.98 5.04M

Table 4. After applying low-rank architecture for feed forward mod-
ules. With and without sharing layers.

ers repeated three times giving a total of 12 virtual transformations
(SL5) which achieved a WER of 3.20 for a model of size 4.84M.
In Table 3, we unshare single weight variables at a time for each
module. We see that unsharing these sub-components still keeps
our model size close to 5M parameters except in the case of the
linear sub-components in both feed forward start and end modules
(SC0, SC1, SC8, and SC9). In addition to unsharing the individual
module sub-components which were shown in Fig. 1, a number of
other significantly smaller weights are also found within each mod-
ule. These weights are small enough that they do not have a large
impact on the overall model size (i.e., only an increase of 0.52M
parameters). Thus, we also evaluate unsharing these miscellaneous
small weights as well (SC10). We can see that unsharing the con-
volution sub-components within the convolution module allows for
the lowest WER (SC6) while unsharing the other sub-components in
the conformer layer each result in an increase in the WER. For the
attention module, unsharing both query (SC2) and value (SC3) re-
sults in similar WER to the original model, yet unsharing key (SC4)
does see a decrease in WER, thus implying that the attention key
sub-components contains important information for our model.

5.4. Low-Rank (and Sharing)

Next we look towards low-rank architecture in Table 4. By reducing
the k, we can subsequently achieve an increase in the number of
physical layers. As we can see, with k = 50 (LR1), we are able
to increase from 8 physical layers compared to only 4 when a low-
rank architecture is not applied (LR0). We find that k = 50 also

Model
WER Model

Sizedev test

Conformer (S) [4] (B0) 2.18 2.53 14M
Handcrafted (B1) 3.53 (-0.00) 3.72 (-0.00) 4.9M
Share Layers (SL5) 3.20 (-0.33) 3.45 (-0.27) 4.84M
Share Modules (SM2) 3.13 (-0.40) 3.35 (-0.37) 5.09M
Shared Sub-C. (SC10) 2.95 (-0.58) 3.28 (-0.44) 5.36M
Low-Rank (LR2) 3.46 (-0.07) 3.69 (-0.03) 5.04M
L.R. Share (LRS3) 2.84 (-0.69) 2.98 (-0.74) 5.04M

Table 5. Overall best results for the evaluated compression methods.

decreases the WER of the model by −0.67 and −0.61 for dev and
test respectively. However, while we expect increasing the number
of physical conformer layers should improve the quality, we find
that k directly counteracts these WER improvements and thus while
k = 20 (LR2) and k = 6 (LR3) achieve lower WER compared to
the non low-rank architecture, they both perform worse than k = 50
(LR1). Continuing with k = 50 and the number of physical layers at
8, we also apply our layer sharing technique2 to increase the number
of virtual layers from 16 (LRS0) up until 40 (LRS3) by repeating
each conformer layer. With this, we find WERs as low as 2.84 and
2.98 on dev and test are achievable at our bounds of 5M parameters
when repeating the 8 physical conformer layers 5 times each (LRS3).

5.5. Overview
Our overall best results for the evaluated methods are shown in Ta-
ble 5. Each of our evaluated models was created based on an ini-
tial 14M parameter model (B0) described in [4]. We compare these
models to a handcrafted 5M parameter model (B1) which was cre-
ated by manually reducing hyperparameters (e.g., number of con-
former blocks). The lowest overall WER was achieved by LRS3
because low-rank decomposition reduces the size of each physical
conformer layer, thus allowing for a greater number of physical con-
former layers while sharing layer weights through repeating offers
an even greater number of virtual conformer layer transformations
without increasing model size. While reducing model size does in-
crease WER compared to larger models, our goal in this work is to
create a model which fits completely within TPU memory, thus of-
fering low-power, always-on ASR. With this, we can handle most
ASR tasks, while defer to a larger model only when necessary.

6. CONCLUSION

In this work, we propose to reduce the size of Conformer-based mod-
els through parameter weight reuse at four levels: (i) repeating con-
former block layer transformations, (ii) sharing specific conformer
modules, (iii) sharing or not sharing sub-components per conformer
module, and (iv) sharing low-rank decomposed sub-weights. By
sharing model weight across layers, we find that we can increase the
number of virtual transformations of our input data without further
increasing the size of our model and thus we can retain our model in-
memory for always-on ambient ASR leveraging low-power and low-
resource neural accelerators such as edge TPU hardware. Through
our evaluations, we find that sharing model weights and applying a
low-rank Conformer architecture (LRS3) offers the greatest perfor-
mance for our 5M parameter models, achieving a WER of 2.84 and
2.98 for LibriSpeech dev-clean and test-clean respectively.

2Preliminary results show only marginal improvements in combining
low-rank and sub-component sharing due to the large search space.

Authorized licensed use limited to: GOOGLE. Downloaded on June 23,2023 at 15:35:40 UTC from IEEE Xplore. Restrictions apply.

7. REFERENCES

[1] Raziel Alvarez and Hyun-Jin Park, “End-to-end Streaming
Keyword Spotting,” in ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 6336–6340.

[2] Swayambhu Nath Ray, Minhua Wu, Anirudh Raju, Pegah
Ghahremani, Raghavendra Bilgi, Milind Rao, Harish Arsikere,
Ariya Rastrow, Andreas Stolcke, and Jasha Droppo, “Listen
with Intent: Improving Speech Recognition with Audio-to-
Intent Front-End,” arXiv preprint arXiv:2105.07071, 2021.

[3] Mattia Antonini, Tran Huy Vu, Chulhong Min, Alessandro
Montanari, Akhil Mathur, and Fahim Kawsar, “Resource Char-
acterisation of Personal-Scale Sensing Models on Edge Accel-
erators,” in Proceedings of the First International Workshop
on Challenges in Artificial Intelligence and Machine Learning
for Internet of Things, 2019, pp. 49–55.

[4] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Par-
mar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zheng-
dong Zhang, Yonghui Wu, and Ruoming Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,”
in Interspeech 2020, 21st Annual Conference of the Inter-
national Speech Communication Association, Virtual Event,
Shanghai, China, 25-29 October 2020, Helen Meng, Bo Xu,
and Thomas Fang Zheng, Eds. 2020, pp. 5036–5040, ISCA.

[5] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio, “Binarized Neural Networks,” Ad-
vances in neural information processing systems, vol. 29, 2016.

[6] Song Han, Jeff Pool, John Tran, and William Dally, “Learning
both Weights and Connections for Efficient Neural Network,”
Advances in neural information processing systems, vol. 28,
2015.

[7] Steven M Hernandez and Eyuphan Bulut, “WiFi Sensing on
the Edge: Signal Processing Techniques and Challenges for
Real-World Systems,” IEEE Communications Surveys & Tuto-
rials, 2022.

[8] Kunran Xu, Huawei Zhang, Yishi Li, Yuhao Zhang, Rui
Lai, and Yi Liu, “An Ultra-low Power TinyML System
for Real-time Visual Processing at Edge,” arXiv preprint
arXiv:2207.04663, 2022.

[9] Colby R Banbury, Vijay Janapa Reddi, Max Lam, William Fu,
Amin Fazel, Jeremy Holleman, Xinyuan Huang, Robert Hur-
tado, David Kanter, Anton Lokhmotov, et al., “Benchmarking
TinyML Systems: Challenges and Direction,” arXiv preprint
arXiv:2003.04821, 2020.

[10] Zhaofeng Wu, Ding Zhao, Qiao Liang, Jiahui Yu, Anmol Gu-
lati, and Ruoming Pang, “Dynamic Sparsity Neural Networks
for Automatic Speech Recognition,” in ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2021, pp. 6014–6018.

[11] Shaojin Ding, Tianlong Chen, and Zhangyang Wang, “Audio
Lottery: Speech Recognition Made Ultra-Lightweight, Noise-
Robust, and Transferable,” in International Conference on
Learning Representations, 2021.

[12] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man
Cheung, and Pascal Frossard, “Adaptive Quantization for Deep
Neural Network,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2018, vol. 32.

[13] Pierre-Emmanuel Novac, Ghouthi Boukli Hacene, Alain Pe-
gatoquet, Benoı̂t Miramond, and Vincent Gripon, “Quantiza-
tion and Deployment of Deep Neural Networks on Microcon-
trollers,” Sensors, vol. 21, no. 9, pp. 2984, 2021.

[14] Shaojin Ding, Phoenix Meadowlark, Yanzhang He, Lukasz
Lew, Shivani Agrawal, and Oleg Rybakov, “4-bit Conformer
with Native Quantization Aware Training for Speech Recogni-
tion,” in Proc. Interspeech 2022, 2022, pp. 1711–1715.

[15] Gianmarco Cerutti, Rahul Prasad, Alessio Brutti, and Elisa-
betta Farella, “Neural Network Distillation on IoT Platforms
for Sound Event Detection,” in Interspeech 2019, 20th Annual
Conference of the International Speech Communication Asso-
ciation, Graz, Austria, 15-19 September 2019, Gernot Kubin
and Zdravko Kacic, Eds. 2019, pp. 3609–3613, ISCA.

[16] Ze Yang, Linjun Shou, Ming Gong, Wutao Lin, and Daxin
Jiang, “Model Compression with Two-stage Multi-teacher
Knowledge Distillation for Web Question Answering System,”
in Proceedings of the 13th International Conference on Web
Search and Data Mining, 2020, pp. 690–698.

[17] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin
Shen, and Hongxia Jin, “Language model compression with
weighted low-rank factorization,” CoRR, vol. abs/2207.00112,
2022.

[18] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao,
“On Compressing Deep Models by Low Rank and Sparse De-
composition,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017, pp. 7370–7379.

[19] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai
Li, “Learning Structured Sparsity in Deep Neural Networks,”
Advances in neural information processing systems, vol. 29,
2016.

[20] Clemens JS Schaefer, Siddharth Joshi, Shan Li, and Raul
Blazquez, “Edge Inference with Fully Differentiable Quan-
tized Mixed Precision Neural Networks,” arXiv preprint
arXiv:2206.07741, 2022.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin, “Attention is All you Need,” Advances in neural
information processing systems, vol. 30, 2017.

[22] Raj Dabre and Atsushi Fujita, “Recurrent Stacking of Layers
for Compact Neural Machine Translation Models,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2019,
vol. 33, pp. 6292–6299.

[23] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut, “ALBERT: A Lite
BERT for Self-supervised Learning of Language Representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[24] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of Deep
Neural Network Acoustic Models with Singular Value Decom-
position,” in Interspeech, 2013, pp. 2365–2369.

[25] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: An ASR corpus based on public
domain audio books,” in 2015 IEEE international conference
on acoustics, speech and signal processing (ICASSP), 2015.

[26] Wei Han, Zhengdong Zhang, Yu Zhang, Jiahui Yu, Chung-
Cheng Chiu, James Qin, Anmol Gulati, Ruoming Pang, and
Yonghui Wu, “ContextNet: Improving Convolutional Neural
Networks for Automatic Speech Recognition with Global Con-
text,” Proc. Interspeech 2020, pp. 3610–3614, 2020.

Authorized licensed use limited to: GOOGLE. Downloaded on June 23,2023 at 15:35:40 UTC from IEEE Xplore. Restrictions apply.

